Startseite Wirtschaftswissenschaften Systemic risk models for disjoint and overlapping groups with equilibrium strategies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Systemic risk models for disjoint and overlapping groups with equilibrium strategies

  • Yichen Feng ORCID logo , Jean-Pierre Fouque ORCID logo EMAIL logo , Ruimeng Hu ORCID logo und Tomoyuki Ichiba
Veröffentlicht/Copyright: 14. Oktober 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We analyze the systemic risk for disjoint and overlapping groups of financial institutions by proposing new models with realistic game features. Specifically, we generalize the systemic risk measure proposed in [F. Biagini, J.-P. Fouque, M. Frittelli and T. Meyer-Brandis, On fairness of systemic risk measures, Finance Stoch. 24 (2020), 2, 513–564] by allowing individual banks to choose their preferred groups instead of being assigned to certain groups. We introduce the concept of Nash equilibrium for these new models, and analyze the optimal solution under Gaussian distribution of the risk factor. We also provide an explicit solution for the risk allocation of the individual banks and study the existence and uniqueness of Nash equilibrium both theoretically and numerically. The developed numerical algorithm can simulate scenarios of equilibrium, and we apply it to study the banking structure with real data and show the validity of the proposed model.

MSC 2010: 60A99; 91A06; 91B50; 91G99

Award Identifier / Grant number: DMS-1814091

Award Identifier / Grant number: DMS-2008427

Award Identifier / Grant number: DMS-1953035

Funding statement: J.-P. Fouque acknowledges the support by the NSF grant DMS-1814091. T. Ichiba was supported in part by the NSF grant DMS-2008427. R. Hu was partially supported by the NSF grant DMS-1953035, the Faculty Career Development Award, the Research Assistance Program Award, and the Early Career Faculty Acceleration funding and the Regents’ Junior Faculty Fellowship at University of California, Santa Barbara.

A Appendix

A.1 Comparison between trivial grouping and multi-groups

We first look at the trivial grouping, i.e., m = h = 1 and all k I 1 = { 1 , 2 , , N } . The group parameter and group vectors are

β m = β = i = 1 N 1 α i , A m = ( 1 , 1 , , 1 ) .

Then, following (2.17), the systemic risk allocation of individual 𝑖 is

E Q X 1 [ Y X i ] = - μ i + 1 α i log ( β - B ) + 1 β j = 1 N σ j i - 1 2 β 2 α i k , j = 1 N σ j k .

The total systemic risk allocation for the system is

(A.1) i = 1 N E Q X 1 [ Y X i ] = - i = 1 N μ i + β log ( β - B ) + 1 2 β i , j = 1 N σ j i .

Then, for the multi-group case, assuming m = 1 , , h ( h 2 ) and for k m I m , the systemic risk allocation of individual k m is

E Q X m [ Y X k m ] = - μ k m + 1 α k m log ( β - B ) + 1 β m j I m σ j k m - 1 2 β m 2 α k m j , l I m σ j l .

The total risk allocation is

(A.2) m = 1 h k m I m E Q X m [ Y X k m ] = - i = 1 N μ i + β log ( β - B ) + 1 2 m = 1 h 1 β m j , k I m σ j k .

We need to compare the total risk of trivial grouping (A.1) and the total risk of nontrivial grouping (A.2). For simplicity, we take h = 2 in the nontrivial grouping case and compare.

Assume an 𝑁-individual system is divided into two subgroups with sizes N 1 = | I 1 | , N 2 = | I 2 | , respectively. Given all risk factors, define

S = i = 1 N X i , S 1 = i I 1 X i , S 2 = i I 2 X i .

Note that S = S 1 + S 2 . Therefore,

Var ( S ) = i , j = 1 N σ i j , Var ( S 1 ) = i , j I 1 σ i j , Var ( S 2 ) = i , j I 2 σ i j .

Then we compare the last term in (A.1), (A.2),

(A.3) ( A.1 ): 1 2 β i , j = 1 N σ i , j = 1 2 β Var ( S ) ,
(A.4) ( A.2 ): 1 2 ( 1 β 1 j , k I 1 σ j , k + 1 β 2 j , k I 2 σ j , k ) = 1 2 ( 1 β 1 Var ( S 1 ) + 1 β 2 Var ( S 2 ) ) .
Since
Var ( S ) = Var ( S 1 ) + Var ( S 2 ) + 2 Cov ( S 1 , S 2 ) ,
2 β 1 β 2 β ( ( A.4 ) - ( A.3 ) ) = β 1 β 2 Var ( S 1 ) + β 2 2 Var ( S 1 ) + β 1 2 Var ( S 2 ) + β 1 β 2 Var ( S 2 ) - β 1 β 2 ( Var ( S 1 ) + Var ( S 2 ) + 2 Cov ( S 1 , S 2 ) ) = β 2 2 Var ( S 1 ) + β 1 2 Var ( S 2 ) - 2 β 1 β 2 Cov ( S 1 , S 2 ) = Var ( β 2 S 1 - β 1 S 2 ) 0 .
Thus (A.3) ≤ (A.4), which is equivalent to (A.1) ≤ (A.2). (The equality holds only if S 1 = S 2 = S , which we can exclude.)

We can conclude the trivial grouping has a smaller total systemic risk allocation for the 𝑁-player system compared with two-group case. It can be extended to the general grouping case and shows the advantage of trivial grouping or fewer groups in terms of the total risk. And it is consistent with the monotonicity property proved in [9].

A.2 Proof of Claim 2.1

Under the assumption β m = | I m | 1 α , equation (2.17) becomes

E Q X m [ Y X k ] = - μ k + 1 α log ( β - B ) + α | I m | ( σ 2 + ( | I m | - 1 ) ρ σ 2 ) - 1 2 α ( α | I m | ) 2 ( | I m | σ 2 + ( | I m | 2 ) 2 ρ σ 2 ) = - μ k + 1 α log ( β - B ) + α 2 | I m | σ 2 + ( α | I m | - 1 | I m | - α | I m | - 1 2 | I m | ) ρ σ 2 = - μ k + 1 α log ( β - B ) + α 1 2 | I m | σ 2 + α | I m | - 1 2 | I m | ρ σ 2 = - μ k + 1 α log ( β - B ) + α 2 ( ( 1 - ρ ) 1 | I m | + ρ ) σ 2 .

First, when ρ 1 , the function is monotonically decreasing in | I m | . So the risk allocation for every individual/individual is maximized when | I m | = n , i.e., all individuals/individuals are in the same group.

If we assume individuals are separated in several groups which makes it a Nash equilibrium for all. For some individual 𝑖 in the second largest group, moving to the largest group makes it achieve a smaller risk allocation, which is better. If there are only two equal size groups, i.e., “ n 2 - n 2 ”, one individual 𝑖 in group 1 joining the other one gives “ ( n 2 - 1 ) - ( n 2 + 1 ) ” and E Q X 1 [ Y X i ] > E Q X 2 [ Y X i ] . So “ ( n 2 - 1 ) - ( n 2 + 1 ) ” cannot be a Nash equilibrium neither.

In conclusion, nontrivial grouping strategy cannot be a Nash equilibrium and only | I m | = n is a Nash equilibrium under the case that all standard deviation and utility parameters are the same, and the correlation coefficient is ρ [ - 1 , 1 ) . When ρ = 1 , the risk for every individual is constant and grouping has no effect.

A.3 Proof of Claim 2.2

First we look at the grouping “ { 1 , 2 } - { 3 , 4 } ” and find the equivalent condition to make it a Nash equilibrium. We compare risks for individual 1 under two cases, according to (2.17),

under “ { 1 , 2 } - { 3 , 4 } ”: E Q X 1 [ Y X 1 ] = - μ 1 + log ( β - B ) + 1 2 ( σ 2 + ρ σ 2 ) - 1 8 ( 2 σ 2 + 2 ρ σ 2 ) , under “ { 2 } - { 1 , 3 , 4 } ”: E Q X 2 [ Y X 1 ] = - μ 1 + log ( β - B ) + 1 3 σ 2 - 1 18 ( 3 σ 2 + 2 ρ σ 2 ) .

For individual 1, to make the risk allocation under “ { 1 , 2 } - { 3 , 4 } ” at most that under “ { 2 } - { 1 , 3 , 4 } ”,

1 3 σ 2 - 1 18 ( 3 σ 2 + 2 ρ σ 2 ) 1 2 ( σ 2 + ρ σ 2 ) - 1 8 ( 2 σ 2 + 2 ρ σ 2 ) ρ - 3 13 .

For individuals 2, 3, 4, we repeat a similar discussion, and the condition is the same, ρ - 3 13 . So, in conclusion, if ρ - 3 13 , grouping “ { 1 , 2 } - { 3 , 4 } ” is a Nash equilibrium.

In the grouping “ { 1 , 3 } - { 2 , 4 } ”, we follow the same discussion about comparing risk allocations for all individuals. For example, for individual 1,

under “ { 1 , 3 } - { 2 , 4 } ”: E Q X 1 [ Y X 1 ] = - μ 1 + log ( β - B ) + 1 2 σ 2 - 1 8 2 σ 2 , under “ { 3 } - { 1 , 2 , 4 } ”: E Q X 2 [ Y X 1 ] = - μ 1 + log ( β - B ) + 1 3 ( σ 2 + ρ σ 2 ) - 1 18 ( 3 σ 2 + 2 ρ σ 2 ) .

For individual 1, to make the risk allocation under “ { 1 , 3 } - { 2 , 4 } ” at most that under “ { 3 } - { 1 , 2 , 4 } ”,

1 3 ( σ 2 + ρ σ 2 ) - 1 18 ( 3 σ 2 + 2 ρ σ 2 ) 1 2 σ 2 - 1 8 2 σ 2 ρ 3 8 .

For individuals 2, 3, 4, we repeat a similar discussion, and the condition is the same, ρ 3 8 . As a result, grouping “ { 1 , 3 } - { 2 , 4 } ” is a Nash equilibrium if ρ 3 8 . It is also the equivalent condition for grouping “ { 1 , 4 } - { 2 , 3 } ” to be a Nash equilibrium

A.4 Proof of Claim 2.3

Similar to the proof of Claim 2.2, we look at the grouping “ { 1 , 2 } - { 3 , 4 , 5 } ” and find the equivalent condition to make it a Nash equilibrium. Under the assumptions, we first compare risks for individual 1 under two cases, according to (2.17),

under “ { 1 , 2 } - { 3 , 4 , 5 } ”: E Q X 1 [ Y X 1 ] = - μ 1 + log ( β - B ) + 1 2 ( σ 2 + ρ σ 2 ) - 1 8 ( 2 σ 2 + 2 ρ σ 2 ) , under “ { 2 } - { 1 , 3 , 4 , 5 } ”: E Q X 2 [ Y X 1 ] = - μ 1 + log ( β - B ) + 1 4 σ 2 - 1 32 ( 4 σ 2 + 6 ρ σ 2 ) .

For individual 1, to make the risk allocation under “ { 1 , 2 } - { 3 , 4 , 5 } ” at most that under “ { 2 } - { 1 , 3 , 4 , 5 } ”,

1 4 σ 2 - 1 32 ( 4 σ 2 + 6 ρ σ 2 ) 1 2 ( σ 2 + ρ σ 2 ) - 1 8 ( 2 σ 2 + 2 ρ σ 2 ) ρ - 2 7 .

For individual 2, this is the same condition to have a smaller risk allocation. We then compare risks for individual 3 under two cases,

under “ { 1 , 2 } - { 3 , 4 , 5 } ”: E Q X 2 [ Y X 3 ] = - μ 3 + log ( β - B ) + 1 3 ( σ 2 + 2 ρ σ 2 ) - 1 18 ( 3 σ 2 + 6 ρ σ 2 ) , under “ { 1 , 2 , 3 } - { 4 , 5 } ”: E Q X 1 [ Y X 3 ] = - μ 3 + log ( β - B ) + 1 3 σ 2 - 1 18 ( 3 σ 2 + 2 ρ σ 2 ) .

To make the risk allocation for individual 3 under “ { 1 , 2 } - { 3 , 4 , 5 } ” at most that under “ { 1 , 2 , 3 } - { 4 , 5 } ”, we get the equivalent condition ρ 0 . This is true for individuals 4, 5 as well. In conclusion, when ρ - 2 7 , “ { 1 , 2 } - { 3 , 4 , 5 } ” is a Nash equilibrium for all individuals.

In the grouping “ { 1 , 3 } - { 2 , 4 , 5 } ”, we follow the same discussion about comparing risk allocations for all individuals. Individual 1 will stay with individual 3 instead of joining the other group if ρ = 1 . Individual 2 will stay if ρ 0 . Individual 3 will stay with individual 1 if ρ 2 5 , and individuals 4, 5 will not move for any 𝜌. As a result, grouping “ { 1 , 3 } - { 2 , 4 , 5 } ” is not a Nash equilibrium for any ρ ( - 1 , 1 ) .

For the grouping “ { 1 , 2 , 3 } - { 4 , 5 } ”, after the discussion about the condition for every individual not moving, we find a contradiction which proves, for any value of 𝜌, this grouping cannot be a Nash equilibrium.

A.5 Proof of Theorem 3.1

We can rewrite the systemic risk measure 𝜌 as

ρ ( X ) = inf { m = 1 h d m : d = ( d 1 , , d h ) R h , Y = ( Y i , j , i I j , 1 j h ) L 0 ( R m = 1 h | I m | * h ) , E [ m = 1 h k I m - 1 α k exp [ - α k ( w k , m X k + Y k , m ) ] ] = B , i I j Y i , j = d j for j = 1 , 2 , , h } ,

where ( I 1 , , I h ) are the group index sets given. For any group 𝑚, we define the smallest element as m 0 I m and fix another element m * I m and m * m 0 . (When there is only one element in the group, m * = m 0 , and the discussion will be similar.) In the following proof, we assume | I m | 2 for all m = 1 , , h . We also assume 𝑌 is defined on a finite space, Y k , m { y 1 k , m , , y M k , m } for all k , m and y j k , m R . Then we have

y j m * , m = d m - k I m , k m * y j k , m for m = 1 , , h .

We show the results with the Lagrange method with the function defined by

L ( d , Y , λ ) = m = 1 h d m + λ { j = 1 M p j m = 1 h [ k I m , k m * - 1 α k exp ( - α k ( w k , m X k ( ω j ) + y j k , m ) ) + - 1 α m * exp ( - α m * ( w m * , m X m * ( ω j ) + d m - k I m , k m * y j k , m ) ) ] - B } .

We compute partial derivatives of ℒ with respect to all variables and get all equivalent conditions in the following.

(1) Given 𝑚, for j = 1 , , M , k I m and k m * , we have L y j k , m = 0 if and only if, for every fixed 𝑗,

0 = L y j k , m = λ p j [ exp ( - α k ( w k , m X k ( ω j ) + y j k , m ) ) - exp ( - α m * ( w m * , m X m * ( ω j ) + d m - k I m , k m * y j k , m ) ) ]

or, equivalently, we have

(A.5) exp ( - α k ( w k , m X k ( ω j ) + y j k , m ) ) = exp ( - α m * ( w m * , m X m * ( ω j ) + d m - k I m , k m * y j k , m ) ) .

This implies

exp ( - α k ( w k , m X k ( ω j ) + y j k , m ) ) = exp ( - α m 0 ( w m 0 , m X m 0 ( ω j ) + y j m 0 , m ) ) .

Then, for k m * ,

(A.6) y j k , m = 1 α k ( α m 0 w m 0 , m X m 0 ( ω j ) - α k w k , m X k ( ω j ) + α m 0 y j m 0 , m ) ,

and by (A.5) and (A.6), we obtain (details are shown below)

(A.7) y j m 0 , m = 1 α m 0 β m ( k I m w k , m X k ( ω j ) ) - w m 0 , m X m 0 ( ω j ) + 1 α m 0 β m d m = 1 α m 0 β m S m ( ω j ) - w m 0 , m X m 0 ( ω j ) + 1 α m 0 β m d m ,

where β m = k I m 1 α k , S m = k I m w k , m X k .

Proof

By (A.6),

k I m , k m * y j k , m = k I m , k m * 1 α k α m 0 ( w m 0 , m X m 0 ( ω j ) + y j m 0 , m ) - k I m , k m * w k , m X k ( ω j ) = ( β m - 1 α m * ) α m 0 ( w m 0 , m X m 0 ( ω j ) + y j m 0 , m ) - k I m , k m * w k , m X k ( ω j ) ,
w m * , m X m * ( ω j ) + d m - k I m , k m * y j k , m = d m - ( β m - 1 α m * ) α m 0 ( w m 0 , m X m 0 ( ω j ) + y j m 0 , m ) + S m ( ω j ) .
Thus, using (A.5), we obtain
- α m * ( w m * , m X m * ( ω j ) + d m - k I m , k m * y j k , m )
= - α m * d m + ( β m α m * - 1 ) α m 0 ( w m 0 , m X m 0 ( ω j ) + y j m 0 , m ) - α m * S m ( ω j )
= - α m 0 ( w m 0 , m X m 0 ( ω j ) + y j m 0 , m ) by ( A.5 )
α m * β m α m 0 ( w m 0 , m X m 0 ( ω j ) + y j m 0 , m ) = α m * d m + α m * S m ( ω j )
( A.7 ) .

(2) For m = 1 , , h , the derivative with respect to d m , L d m = 0 if and only if

(A.8) 0 = L d m = 1 + λ j = 1 M p j exp ( - α m * ( w m * , m X m * ( ω j ) + d m - k I m , k m * y j k , m ) ) .

By (A.5),

0 = 1 + λ j = 1 M p j exp ( - α k ( w k , m X k ( ω j ) + y j k , m ) ) for all k I m and k m * ,

i.e.,

(A.9) j = 1 M p j exp ( - α k ( w k , m X k ( ω j ) + y j k , m ) ) = - 1 λ .

(3) The derivative with respect to 𝜆, L λ = 0 if and only if

B = E [ m = 1 h k I m - 1 α k exp [ - α k ( w k , m X k + Y k , m ) ] ]
= j = 1 M p j m = 1 h [ k I m , k m * - 1 α k exp ( - α k ( w k , m X k ( ω j ) + y j k , m ) )
+ - 1 α m * exp ( - α m * ( w m * , m X m * ( ω j ) + d m - k I m , k m * y j k , m ) ) ]
= j = 1 M m = 1 h [ k I m , k m * - 1 α k p j exp ( - α k ( w k , m X k ( ω j ) + y j k , m ) )
+ - 1 α m * p j exp ( - α m * ( w m * , m X m * ( ω j ) + d m - k I m , k m * y j k , m ) ) ]
= m = 1 h [ k I m , k m * - 1 α k - 1 λ + - 1 - α m * - 1 λ ] by ( A.8 ), ( A.9 )
= 1 λ m = 1 h k I m 1 α k = 1 λ β .
Hence

(A.10) λ = β B .

We then compute d m by inserting (A.10) and (A.7) in (A.9) for k = m 0 I m , and m 0 m * ,

- B β = j = 1 M p j exp ( - α m 0 ( w m 0 , m X m 0 ( ω j ) + y j m 0 , m ) ) = j = 1 M p j exp ( - 1 β m ( S m ( ω j ) + d m ) ) = e - d m / β m j = 1 M p j exp ( - 1 β m S m ( ω j ) ) = e - d m / β m E ( e - S m / β m ) .

So

d m = β m log ( β - B E ( e - S m / d m ) ) .

Then, back to (A.6) and (A.7), for k , m 0 , m * I m and k m 0 m * ,

y j m 0 , m = 1 α m 0 β m S m ( ω j ) - w m 0 , m X m 0 ( ω j ) + 1 α m 0 β m d m ,
y j k , m = α m 0 α k w m 0 , m X m 0 ( ω j ) - w k , m X k ( ω j ) + 1 α k [ 1 β m S m ( ω j ) - α m 0 w m 0 , m X m 0 ( ω j ) + 1 β m d m ] = - w k , m X k ( ω j ) + 1 α k β m ( S m ( ω j ) + d m ) ,
y j m * , m = d m - k I m , k m * y j k , m = d m + k I m , k m * w k , m X k ( ω j ) - k I m , k m * 1 α k β m ( S m ( ω j ) + d m ) = d m + ( S m ( ω j ) - w m * , m X m * ( ω j ) ) - ( β m - 1 α m * ) 1 β m ( S m ( ω j ) + d m ) = - w m * , m X m * ( ω j ) + 1 α m * β m ( S m ( ω j ) + d m ) .
So, for given 𝑚, for all k I m , we have

Y k , m = - w k , m X k + 1 α k β m ( S m + d m ) , where d m = β m log ( β - B E ( e - S m / d m ) ) .

In addition, the systemic risk measure is given by

ρ ( X ) = m = 1 h d m = m = 1 h β m log ( β - B E ( e - S m / d m ) ) = β log ( β - B ) + m = 1 h β m log ( E ( e - S m / d m ) ) .

A.6 Proof of Proposition 3.1

First we prove the marginal risk allocation for individual 𝑖 in group 𝑗. By Theorem 3.1, for i I j ,

E Q X + ε Z j [ Y X + ε Z i , j ] = E [ Y X + ε Z i , j d Q X + ε Z j d P ]
= E [ ( - w i , j ( X i + ε Z i ) + 1 α i β j ( S j + ε S j Z ) + 1 α i β j d j X + ε Z ) e - S j X + ε Z / β j E [ e - S j X + ε Z / β j ] ]
= - w i , j E ( ( X i + ε Z i ) e - S j X + ε Z / β j ) E ( e - S j X + ε Z / β j ) + 1 α i β j E ( ( S j + ε S j Z ) e - S j X + ε Z / β j ) E ( e - S j X + ε Z / β j )
+ 1 α i ( log ( β - B ) + log ( E ( e - S j X + ε Z / β j ) ) )
= I + II + III .
Since S j X + ε Z = S j + ε S j Z , and assuming everything is well-defined so that we can use Leibniz integral rule, then we have the following results:
ε E ( e - S j X + ε Z / β j ) = E ( - S j Z β j e - S j X + ε Z / β j ) ,
ε E ( ( S j + ε S j Z ) e - S j X + ε Z / β j ) = E [ S j Z e - S j X + ε Z / β j - ( S j + ε S j Z ) S j Z β j e - S j X + ε Z / β j ] .
Then we compute the derivatives
I ε = - w i , j ε ( E ( ( X i + ε Z i ) e - S j X + ε Z / β j ) E ( e - S j X + ε Z / β j ) ) = - w i , j 1 ( E e - S j X + ε Z / β j ) 2 [ E ( Z i e - S j X + ε Z / β j ) E ( e - S j X + ε Z / β j ) + E ( ( X i + ε Z i ) ( - S j Z β j ) e - S j X + ε Z / β j ) E ( e - S j X + ε Z / β j ) - E ( ( X i + ε Z i ) e - S j X + ε Z / β j ) E ( - S j Z β j e - S j X + ε Z / β j ) ] = - w i , j [ E Q X + ε Z j [ Z i ] - 1 β j E Q X + ε Z j [ ( X i + ε Z i ) S j Z ] + 1 β j E Q X + ε Z j [ X i + ε Z i ] E Q X + ε Z j [ S j Z ] ] = E Q X + ε Z j [ - w i , j Z i ] + w i , j β j Cov Q X + ε Z j ( X i + ε Z i , S j Z ) ,
II ε = 1 α i β j ε ( E ( ( S j + ε S j Z ) e - S j X + ε Z / β j ) E ( e - S j X + ε Z / β j ) ) = 1 α i β j 1 ( E e - S j X + ε Z / β j ) 2 [ ( E ( S j Z e - S j X + ε Z / β j ) + E ( ( S j + ε S j Z ) ( - S j Z β j ) e - S j X + ε Z / β j ) ) E ( e - S j X + ε Z / β j ) - E ( ( S j + ε S j Z ) e - S j X + ε Z / β j ) E ( - S j Z β j e - S j X + ε Z / β j ) ] = 1 α i β j E Q X + ε Z j [ S j Z ] - 1 α i β j 2 Cov Q X + ε Z j ( S j + ε S j Z , S j Z ) ,
III ε = 1 α i 1 E ( e - S j X + ε Z / β j ) E ( - S j Z β j e - S j X + ε Z / β j ) = - 1 α i β j E Q X + ε Z j [ S j Z ] .
As a result, we obtain
ε E Q X + ε Z j [ Y X + ε Z i , j ] = ε ( I + II + III )
= - w i , j E Q X + ε Z j [ Z i ] + w i , j β j Cov Q X + ε Z j ( X i + ε Z i , S j Z ) + 1 α i β j E Q X + ε Z j [ S j Z ]
- 1 α i β j 2 Cov Q X + ε Z j ( S j + ε S j Z , S j Z ) - 1 α i β j E Q X + ε Z j [ S j Z ]
= E Q X + ε Z j [ - w i , j Z i ] + w i , j β j Cov Q X + ε Z j ( X i + ε Z i , S j Z ) - 1 α i β j 2 Cov Q X + ε Z j ( S j + ε S j Z , S j Z )
= E Q X + ε Z j [ - w i , j Z i ] - 1 β j Cov Q X + ε Z j ( Y X + ε Z i , j , S j Z ) .
Then, when ε = 0 , we have the formula for marginal risk allocation for individual 𝑖 in group 𝑗 in Proposition 3.1.

The marginal risk contribution of group 𝑗 is trivial, and for the conclusion on local causal responsibility, we have

E Q X j [ Y X + ε Z i , j ] = E Q X j [ ( - w i , j ( X i + ε Z i ) + 1 α i β j ( S j + ε S j Z ) + 1 α i β j d j X + ε Z ) ] .

Then, according to the previous proof,

ε E Q X j [ Y X + ε Z i , j ] = E Q X j ( - w i , j Z i + 1 α i β j S j Z ) - 1 α i β j E Q X + ε Z j ( S j Z ) ,

and thus

ε E Q X j [ Y X + ε Z i , j ] | ε = 0 = E Q X j [ - w i , j Z i ] .

A.7 Proof of Proposition 3.2

By Theorem 3.1, for i I j ,

E Q X j [ Y i , j ] = E [ Y i , j d Q X j d P ] = E [ ( - w i , j X i + 1 α i β j ( S j + d j ) ) e - S j / β j E [ e - S j / β j ] ] = - w i , j E ( X i e - S j / β j ) E ( e - S j / β j ) + 1 α i β j E ( S j e - S j / β j ) E ( e - S j / β j ) + 1 α i ( log ( β - B ) + log ( E ( e - S j / β j ) ) ) = I + II + III .

Assuming everything is well-defined so that we can use the Leibniz integral rule, then we have the following results:

w i , j E ( e - S j / β j ) = E ( - X i β j e - S j / β j ) , w i , j E ( S j e - S j / β j ) = E [ X i e - S j / β j - S j X i β j e - S j / β j ] .

Compute the derivatives

I w i , j = w i , j ( - w i , j E ( X i e - S j / β j ) E ( e - S j / β j ) ) = - E ( X i e - S j / β j ) E ( e - S j / β j ) - w i , j E ( - ( X i ) 2 β j e - S j / β j ) E ( e - S j / β j ) - E ( X i e - S j / β j ) E ( - X i β j e - S j / β j ) ( E ( e - S j / β j ) ) 2 = - E ( X i e - S j / β j ) E ( e - S j / β j ) + w i , j β j E ( ( X i ) 2 e - S j / β j ) E ( e - S j / β j ) - w i , j β j ( E ( X i e - S j / β j ) E ( e - S j / β j ) ) 2 = - E Q X j [ X i ] + w i , j β j Var Q X j ( X i ) ,
II w i , j = 1 α i β j w i , j ( E ( S j e - S j / β j ) E ( e - S j / β j ) ) = 1 α i β j 1 ( E ( e - S j / β j ) ) 2 ( E [ X i e - S j / β j - S j X i β j e - S j / β j ] E ( e - S j / β j ) - E ( S j e - S j / β j ) E ( - X i β j e - S j / β j ) ) = 1 α i β j ( E ( X i e - S j / β j ) E ( e - S j / β j ) - 1 β j E ( X i S j e - S j / β j E ( e - S j / β j ) ) + 1 β j E ( X i e - S j / β j E ( e - S j / β j ) ) E ( S j e - S j / β j E ( e - S j / β j ) ) ) = 1 α i β j E Q X j [ X i ] - 1 α i β j 2 Cov Q X j ( X i , S j ) ,
III w i , j = w i , j ( 1 α i log ( β - B ) + 1 α i log ( E ( e - S j / β j ) ) ) = 1 α i 1 E ( e - S j / β j ) E ( - X i β j e - S j / β j ) = - 1 α i β j E Q X j [ X i ] .
As a result,

E Q X j [ Y i , j ] w i , j = w i , j ( I + II + III ) = - E Q X j [ X i ] + w i , j β j Var Q X j ( X i ) + 1 α i β j E Q X j [ X i ] - 1 α i β j 2 Cov Q X j ( X i , S j ) - 1 α i β j E Q X j [ X i ] = - E Q X j [ X i ] - 1 α i β j 2 Cov Q X j ( X i , S j ) + w i , j β j Var Q X j ( X i ) , i I j .

A.8 Proof of Proposition 3.3

Define

η m = k I m w k , m w k , m 1 α k .

By Theorem 3.1, for k I m ,

k I m w k , m w k , m Y k , m = S m + d m β m k I m w k , m w k , m 1 α k - k I m w k , m w k , m w k , m X k = S m + d m β m η m - k I m w k , m X k .

Then

E Q X m [ k I m w k , m w k , m Y k , m ]
= E Q X m ( η m β m S m - k I m w k , m X k ) + η m β m β m log { - β B E [ e - S m / β m ] }
= η m log { exp [ 1 η m E Q X m ( η m β m S m - k I m w k , m X k ) ] } + η m log { - β B E [ e - S m / β m ] }
η m log { E Q X m [ exp ( 1 β m S m - 1 η m k I m w k , m X k ) ] } + η m log { - β B E [ e - S m / β m ] }
= η m log { E [ e S m / β m e - S m / β m exp ( - 1 η m k I m w k , m X k ) E [ e - S m / β m ] ] } + η m log { - β B E [ e - S m / β m ] }
= η m log { - β B E [ exp ( - 1 η m k I m w k , m X k ) ] }
< β m log { - β B E [ exp ( - 1 β m k I m w k , m X k ) ] } if k I m w k , m X k is nonnegative
(A.11) := d m .

In conclusion, if both k I m w k , m X k and k I m ′′ w k , m ′′ X k are nonnegative, the inequality holds for the risk allocations of subgroup I m , as well as I m ′′ . Otherwise, we have the inequality given by (A.11).

A.9 Necessary and sufficient condition for 𝐵 in Remark 3.4

Here we show a necessary and sufficient condition for 𝐵 to have a trivial Nash equilibrium through an example. We assume all risk factors are i.i.d. Gaussian random variables, where σ i j = 0 , i j and σ i i = σ for all i , j .

When all banks are in one group, i.e., h = 1 , β = i = 1 N 1 α i ,

(A.12) E Q X [ Y X 1 ] = E Q X 1 [ Y X 1 , 1 ] = 1 α 1 log ( β - B ) - μ 1 + 1 β 1 σ - 1 2 β 1 2 α 1 N σ .

When bank 1 decides to split and put some weights in another group, e.g. there exist w 1 , 1 , w 1 , 2 > 0 and w 1 , 1 + w 1 , 2 = 1 , then β = β + 1 α 1 and β 1 = β , β 2 = 1 α 1 ,

(A.13) E Q X [ Y X 1 ] = E Q X 1 [ Y X 1 , 1 ] + E Q X 2 [ Y X 1 , 2 ] = 2 α 1 log ( β - B ) - μ 1 + w 1 , 1 2 β 1 σ + w 1 , 2 2 β 2 σ - 1 2 β 1 2 α 1 ( ( N - 1 ) σ + w 1 , 1 2 σ ) - 1 2 β 2 2 α 1 w 1 , 2 2 σ .

To have a trivial Nash equilibrium, for bank 1, it should hold that (A.13) ≥ (A.12), which gives

(A.14) 1 α 1 log ( - B ) 1 α 1 log ( ( β ) 2 β ) - [ 1 β 1 - ( w 1 , 1 2 β 1 + w 1 , 2 2 β 2 ) ] σ - 1 2 α 1 [ ( w 1 , 1 2 β 1 2 + w 1 , 2 2 β 2 2 ) - 1 β 1 2 ] σ .

Then, by extending (A.14) to all banks, we can get the necessary and sufficient condition on 𝐵 to have a trivial Nash equilibrium: for all i = 1 , , N , 𝐵 satisfies

1 α i log ( - B ) 1 α i log ( ( β ) 2 β ) - [ 1 β 1 - ( w i , 1 2 β 1 + w i , 2 2 β 2 ) ] σ - 1 2 α i [ ( w i , 1 2 β 1 2 + w i , 2 2 β 2 2 ) - 1 β 1 2 ] σ ,

where β 2 = 1 α i , β 1 = i = 1 N 1 α i and β = β 1 + β 2 .

Recall that 𝐵 is negative and stands for the minimal level of expected utility. Intuitively, when 𝐵 is small, log ( - B ) is large, then some of the inequalities tend to be violated so that there would be no trivial Nash equilibrium in the system. On the other hand, when 𝐵 is large (close to 0), log ( - B ) will be extremely small so that a trivial Nash equilibrium may exist in the system.

A.10 Remark for S m in equation (2.16)

Remark A.1

Some results about S m are the following:

E ( e - S m / β m ) = exp ( - 1 β m μ m s + 1 2 β m 2 ( σ m s ) 2 ) ,
E ( X i e - S m / β m ) = B ( μ i - 1 β m A m Σ [ , i ] ) exp ( - 1 β m μ m s + 1 2 β m 2 ( σ m s ) 2 ) for i I m ( see below for a proof ) ,
E ( S m e - S m / β m ) = ( μ m s - 1 β m ( σ m s ) 2 ) exp ( - 1 β m μ m s + 1 2 β m 2 ( σ m s ) 2 ) .

Proof

Define t T = ( t 1 , , t N ) . Then

E ( X i e t T X ) = M x ( t ) t i = t i exp ( μ T t + 1 2 t T Σ t ) = ( μ i + t T Σ [ , i ] ) exp ( μ T t + 1 2 t T Σ t ) .

Thus we obtain

E ( X i e - S m / β m ) = E ( X i e - ( A m / β m ) X ) = ( μ i - 1 β m A m Σ [ , i ] ) exp ( - 1 β m μ m s + 1 2 β m 2 ( σ m s ) 2 ) .

A.11 Sufficient condition for local optimal weights

To investigate condition (3.13) further, we make some reasonable assumptions on estimates and introduce some situations when they hold.

Assuming all w k , 1 , w k , 2 0 for all k i , then β 1 = β 2 = 1 α k . Then (3.13) is equivalent to

- ( 2 β 1 - 1 β 1 2 α i ) σ i i < ( 1 β 1 2 α i - 1 β 1 ) k = 1 , k i N ( w k , 1 - w k , 2 ) σ k i < ( 2 β 1 - 1 β 1 2 α i ) σ i i .

Since

1 β 1 2 α i - 1 β 1 < 0 , | ( w k , 1 - w k , 2 ) σ k i | | σ k i | for all k , i ,

we can deduce a sufficient condition for w ( i ) * ( 0 , 1 ) for individual 𝑖,

(A.15) ( 1 - 1 β 1 α i ) k = 1 , k i N | σ k i | < ( 2 - 1 β 1 α i ) σ i i .

Remark A.2

From above, we can have a rough estimation: if σ i σ , ρ > 0 and α = [ 1 , 1 , 1 , 1 ] (i.e., no extremely large 𝜎 and no extremely small 𝛼), the inequality is true when ρ < 7 9 , according to

( 1 - 1 4 ) ( 4 - 1 ) ρ σ 2 < ( 2 - 1 4 ) σ 2 .

This explains why in numerical experiments, when we apply reasonable values of parameters, the optimal weights are often located between ( 0 , 1 ) . And when ( w k , 1 , w k , 2 ) are close for most k i , the weights for individual 𝑖 are around 0.5 because of small A 0 and B 1 B 2 in this case.

If, for individual 𝑖, σ i is small and σ i σ i 0 for some i 0 , then the sufficient condition does not hold, and by numerical results, we found w ( i ) * is not in ( 0 , 1 ) anymore.

Assume for some 𝑘(’s), w k , 1 , w k , 2 can be 0 or 1. Then β 1 β 2 , but it is still true that - 1 w k , 1 - w k , 2 1 for all 𝑘. Then (3.13) can be rewritten as

- ( 2 β 2 - 1 β 2 2 α i ) σ i i < k = 1 , k i N ( w k , 1 ( 1 β 1 2 α i - 1 β 1 ) - w k , 2 ( 1 β 2 2 α i - 1 β 2 ) ) σ k i < ( 2 β 1 - 1 β 1 2 α i ) σ i i .

A sufficient condition for w ( i ) * ( 0 , 1 ) for individual 𝑖 is

{ ( 1 β 1 - 1 β 1 2 α i ) k = 1 , k i N | σ k i | < ( 2 β 2 - 1 β 2 2 α i ) σ i i , ( 1 β 2 - 1 β 2 2 α i ) k = 1 , k i N | σ k i | < ( 2 β 1 - 1 β 1 2 α i ) σ i i .

This is a generalization of (A.15).

A.12 Necessary and sufficient condition for optimal weights

First we compare the minimal risk over non-zero weights (3.14) with the corner case ( w i 1 , w i 2 ) = ( 0 , 1 ) ,

E Q X [ Y i ] | w = w * - ( 3.10 ) = 2 α i log ( β - B ) - 1 α i log ( β - B )
+ w * k = 1 , k i N [ ( w k , 1 β 1 - w k , 2 β 2 ) - ( w k , 1 β 1 2 α i - w k , 2 β 2 2 α i ) ] σ k i
+ ( ( w * ) 2 β 1 - ( w * ) 2 2 β 1 2 α i ) σ i i + ( ( 1 - w * ) 2 - 1 ) ( 1 β 2 - 1 2 β 2 2 α i ) σ i i
- 1 2 β 1 2 α i m , k = 1 , m , k i N w k , 1 w m , 1 σ k m
= 2 α i log ( β - B ) - 1 α i log ( β - B ) + w * ( - A ) + ( w * ) 2 2 B 1 + w * ( w * - 2 ) 2 B 2
- 1 2 β 1 2 α i m , k = 1 , m , k i N w k , 1 w m , 1 σ k m ( use notation A , B 1 , B 2 )
= 2 α i log ( β - B ) - 1 α i log ( β - B ) - w * ( A - w * 2 B 1 - w * - 2 2 B 2 ) = Δ
- 1 2 β 1 2 α i m , k = 1 , m , k i N w k , 1 w m , 1 σ k m
(A.16) = 2 α i log ( β - B ) - 1 α i log ( β - B ) - ( A + B 2 ) 2 2 ( B 1 + B 2 ) - 1 2 β 1 2 α i m , k = 1 , m , k i N w k , 1 w m , 1 σ k m .
Since w * = A + B 2 B 1 + B 2 , we get Δ = A - w * 2 ( B 1 + B 2 ) + B 2 = A + B 2 2 .

We compare the minimal risk of non-boundary case (3.14) with the boundary case ( w i 1 , w i 2 ) = ( 1 , 0 ) ,

E Q X [ Y i ] | w = w * - ( 3.9 ) = 2 α i log ( β - B ) - 1 α i log ( β - B )
+ ( w * - 1 ) k = 1 , k i N [ ( w k , 1 β 1 - w k , 2 β 2 ) - ( w k , 1 β 1 2 α i - w k , 2 β 2 2 α i ) ] σ k i
+ ( ( w * ) 2 - 1 ) ( 1 β 1 - 1 2 β 1 2 α i ) σ i i + ( 1 - w * ) 2 ( 1 β 2 - 1 2 β 2 2 α i ) σ i i
- 1 2 β 2 2 α i m , k = 1 , m , k i N w k , 2 w m , 2 σ k m
= 2 α i log ( β - B ) - 1 α i log ( β - B ) - ( w * - 1 ) ( A - w * + 1 2 B 1 - w * - 1 2 B 2 )
- 1 2 β 2 2 α i m , k = 1 , m , k i N w k , 2 w m , 2 σ k m
(A.17) = 2 α i log ( β - B ) - 1 α i log ( β - B ) - ( A - B 1 ) 2 2 ( B 1 + B 2 ) - 1 2 β 2 2 α i m , k = 1 , m , k i N w k , 2 w m , 2 σ k m .

If both (A.17) and (A.16) are less than 0, we get conditions (3.15), which are the necessary and sufficient conditions to conclude that non-zero weights ( w * , 1 - w * ) are the optimal weights to minimize the total risk.

Acknowledgements

The authors are grateful to Stéphane Crépey, Samuel Drapeau, Mekonnen Tadese, Dorinel Bastide and Romain Arribehaute for useful discussions on the formation of CCPs.

References

[1] C. Albanese, Y. Armenti and S. Crépey, XVA metrics for CCP optimization, Stat. Risk Model. 37 (2020), no. 1–2, 25–53. 10.1515/strm-2017-0034Suche in Google Scholar

[2] H. Amini, R. Cont and A. Minca, Resilience to contagion in financial networks, Math. Finance 26 (2016), no. 2, 329–365. 10.1111/mafi.12051Suche in Google Scholar

[3] H. Amini, D. Filipović and A. Minca, Systemic risk and central clearing counterparty design, Swiss Finance Inst. Res. Paper 13-34, 2015. Suche in Google Scholar

[4] H. Amini, D. Filipović and A. Minca, To fully net or not to net: Adverse effects of partial multilateral netting, Oper. Res. 64 (2016), no. 5, 1135–1142. 10.1287/opre.2015.1414Suche in Google Scholar

[5] H. Amini, D. Filipović and A. Minca, Systemic risk in networks with a central node, SIAM J. Financial Math. 11 (2020), no. 1, 60–98. 10.1137/18M1184667Suche in Google Scholar

[6] Y. Armenti, S. Crépey, S. Drapeau and A. Papapantoleon, Multivariate shortfall risk allocation and systemic risk, SIAM J. Financial Math. 9 (2018), no. 1, 90–126. 10.1137/16M1087357Suche in Google Scholar

[7] M. Asmild and M. Zhu, Controlling for the use of extreme weights in bank efficiency assessments during the financial crisis, European J. Oper. Res. 251 (2016), no. 3, 999–1015. 10.1016/j.ejor.2015.12.021Suche in Google Scholar

[8] F. Biagini, J.-P. Fouque, M. Frittelli and T. Meyer-Brandis, A unified approach to systemic risk measures via acceptance sets, Math. Finance 29 (2019), no. 1, 329–367. 10.1111/mafi.12170Suche in Google Scholar

[9] F. Biagini, J.-P. Fouque, M. Frittelli and T. Meyer-Brandis, On fairness of systemic risk measures, Finance Stoch. 24 (2020), no. 2, 513–564. 10.1007/s00780-020-00417-4Suche in Google Scholar

[10] M. K. Brunnermeier and P. Cheridito, Measuring and allocating systemic risk, Risks 7 (2019), no. 2, Paper No. 46. 10.3390/risks7020046Suche in Google Scholar

[11] A. Capponi, W. A. Cheng and S. Rajan, Systemic risk: The dynamics under central clearing, Working Paper, Office of Financial Research, 2015. 10.2139/ssrn.2542684Suche in Google Scholar

[12] R. Cifuentes, G. Ferrucci and H. S. Shin, Liquidity risk and contagion, J. European Econ. Assoc. 3 (2005), no. 2–3, 556–566. 10.1162/jeea.2005.3.2-3.556Suche in Google Scholar

[13] R. Cont and A. Minca, Credit default swaps and systemic risk, Ann. Oper. Res. 247 (2016), no. 2, 523–547. 10.1007/s10479-015-1857-xSuche in Google Scholar

[14] R. Cont, A. Moussa and E. B. Santos, Network structure and systemic risk in banking systems, Handbook on Systemic Risk, Cambridge University, Cambridge (2013), 327–368. 10.1017/CBO9781139151184.018Suche in Google Scholar

[15] B. Craig and G. von Peter, Interbank tiering and money center banks, J. Financial Intermediation 23 (2014), no. 3, 322–347. 10.26509/frbc-wp-201014Suche in Google Scholar

[16] Z. Cui, Q. Feng, R. Hu and B. Zou, Systemic risk and optimal fee for central clearing counterparty under partial netting, Oper. Res. Lett. 46 (2018), no. 3, 306–311. 10.1016/j.orl.2018.03.001Suche in Google Scholar

[17] L. Eisenberg and T. H. Noe, Systemic risk in financial systems, Manag. Sci. 47 (2001), no. 2, 236–249. 10.1287/mnsc.47.2.236.9835Suche in Google Scholar

[18] M. Elliott, B. Golub and M. O. Jackson, Financial networks and contagion, Amer. Econ. Rev. 104 (2014), no. 10, 3115–53. 10.1257/aer.104.10.3115Suche in Google Scholar

[19] Z. Feinstein and T. R. Hurd, Contingent convertible obligations and financial stability, preprint (2020), https://arxiv.org/abs/2006.01037. Suche in Google Scholar

[20] Z. Feinstein, B. Rudloff and S. Weber, Measures of systemic risk, SIAM J. Financial Math. 8 (2017), no. 1, 672–708. 10.1137/16M1066087Suche in Google Scholar

[21] Y. Feng, M. Min and J.-P. Fouque, Deep learning for systemic risk measures, preprint (2022), https://arxiv.org/abs/2207.00739. 10.1145/3533271.3561669Suche in Google Scholar

[22] P. Gai and S. Kapadia, Contagion in financial networks, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466 (2010), no. 2120, 2401–2423. Suche in Google Scholar

[23] P. Gai and S. Kapadia, Liquidity hoarding, network externalities, and interbank market collapse, Proc. Roy. Soc. A 466 (2010), no. 2401–2423, Paper No. 439. 10.1098/rspa.2009.0410Suche in Google Scholar

[24] A. G. Haldane and R. M. May, Systemic risk in banking ecosystems, Nature 469 (2011), no. 7330, 351–355. 10.1038/nature09659Suche in Google Scholar PubMed

[25] T. R. Hurd, Contagion! Systemic Risk in Financial Networks, Springer Briefs Quant. Finance, Springer, Cham, 2016. 10.1007/978-3-319-33930-6Suche in Google Scholar

[26] M. Kusnetsov and L. A. M. Veraart, Interbank clearing in financial networks with multiple maturities, SIAM J. Financial Math. 10 (2019), no. 1, 37–67. 10.1137/18M1180542Suche in Google Scholar

[27] M. L. Lin and J. Surti, Capital Requirements for over-the-counter derivatives central counterparties, International Monetary Fund, 2013. 10.5089/9781475535501.001Suche in Google Scholar

[28] A. Lipton, Systemic risks in central counterparty clearing house networks, Margin in Derivatives Trading, Risk. net, 2018. Suche in Google Scholar

[29] S. Weber and K. Weske, The joint impact of bankruptcy costs, fire sales an cross-holdings on systemic risk in financial networks, Probab. Uncertain. Quant. Risk 2 (2017), Paper No. 9. 10.1186/s41546-017-0020-9Suche in Google Scholar

[30] Financial Crisis Inquiry Commission, The financial crisis inquiry report: The final report of the National Commission on the causes of the financial and economic crisis in the United States including dissenting views, Cosimo, 2011. Suche in Google Scholar

Received: 2022-02-01
Revised: 2022-08-30
Accepted: 2022-09-19
Published Online: 2022-10-14
Published in Print: 2023-01-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/strm-2022-0004/html
Button zum nach oben scrollen