Startseite Wirtschaftswissenschaften A robust estimator of the proportional hazard transform for massive data
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A robust estimator of the proportional hazard transform for massive data

  • Tami Omar , Rassoul Abdelaziz ORCID logo EMAIL logo und Ould Rouis Hamid
Veröffentlicht/Copyright: 14. Oktober 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we explore the idea of grouping under the massive data framework, to propose a median-of-means non-parametric type estimator for the Proportional Hazard Transform (PHT), which has been widely used in finance and insurance. Under certain conditions on the growth rate of subgroups, the consistency and asymptotic normality of the proposed estimators are investigated. Furthermore, we construct a new method to test PHT based on the empirical likelihood method for the median in order to avoid any prior estimate of the variance structure for the proposed estimator, as it is difficult to estimate and often causes much inaccuracy. Numerical simulations and real-data analysis are designed to show the present estimator’s performance. The results confirm that the new put-forward estimator is quite robust with respect to outliers.

MSC 2010: 62E20; 62P05

Acknowledgements

The authors would like to thank the reviewers, the associate editor, and the managing editor for their very valuable comments and suggestions, which led to an improved presentation of the paper.

References

[1] H. Akaike, Information theory and an extension of the maximum likelihood principle, Second International Symposium on Information Theory (Tsahkadsor 1971), Akadémiai Kiadó, Budapest (1973), 267–281. Suche in Google Scholar

[2] N. Alon, Y. Matias and M. Szegedy, The space complexity of approximating the frequency moments, J. Comput. Sci. 58 (2022), 137–147. 10.1006/jcss.1997.1545Suche in Google Scholar

[3] J. Beirlant, Y. Goegebeur, J. Teugels and J. Segers, Statistics of Extremes. Theory and Applications, Wiley Ser. Probab. Stat., John Wiley & Sons, Chichester, 2006. Suche in Google Scholar

[4] E. H. Deme, S. Girard and A. Guillou, Reduced-bias estimator of the proportional hazard premium for heavy-tailed distributions, Insurance Math. Econom. 52 (2013), no. 3, 550–559. 10.1016/j.insmatheco.2013.03.010Suche in Google Scholar

[5] F. Gao and S. Wang, Asymptotic behavior of the empirical conditional value-at-risk, Insurance Math. Econom. 49 (2011), no. 3, 345–352. 10.1016/j.insmatheco.2011.05.007Suche in Google Scholar

[6] M. J. Goovaerts, F. De Vylder and J. Haezendonck, Insurance Premiums. Theory and Applications, North-Holland, Amsterdam, 1984. Suche in Google Scholar

[7] S. B. Hopkins, J. Z. Li and F. Zhang, Robust and heavy-tailed mean estimation made simple, via regret minimization, preprint (2020), https://arxiv.org/abs/2007.15839. Suche in Google Scholar

[8] B.-Y. Jing, J. Yuan and W. Zhou, Jackknife empirical likelihood, J. Amer. Statist. Assoc. 104 (2009), no. 487, 1224–1232. 10.1198/jasa.2009.tm08260Suche in Google Scholar

[9] B. L. Jones and R. Zitikis, Empirical estimation of risk measures and related quantities, N. Am. Actuar. J. 7 (2003), no. 4, 44–54. 10.1080/10920277.2003.10596117Suche in Google Scholar

[10] B. L. Jones and R. Zitikis, Testing for the order of risk measures: An application of 𝐿-statistics in actuarial science, Metron 63 (2005), no. 2, 193–211. Suche in Google Scholar

[11] B. L. Jones and R. Zitikis, Risk measures, distortion parameters, and their empirical estimation, Insurance Math. Econom. 41 (2007), no. 2, 279–297. 10.1016/j.insmatheco.2006.11.001Suche in Google Scholar

[12] G. Lecué and M. Lerasle, Robust machine learning by median-of-means: theory and practice, Ann. Statist. 48 (2020), no. 2, 906–931. 10.1214/19-AOS1828Suche in Google Scholar

[13] M. Lerasle, Lecture notes: Selected topics on robust statistical learning theory, preprint (2019), https://arxiv.org/abs/1908.10761. Suche in Google Scholar

[14] G. Lugosi and S. Mendelson, Sub-Gaussian estimators of the mean of a random vector, Ann. Statist. 47 (2019), no. 2, 783–794. 10.1214/17-AOS1639Suche in Google Scholar

[15] A. Owen, Empirical likelihood ratio confidence regions, Ann. Statist. 18 (1990), no. 1, 90–120. 10.1214/aos/1176347494Suche in Google Scholar

[16] L. Peng, Y. Qi, R. Wang and J. Yang, Jackknife empirical likelihood method for some risk measures and related quantities, Insurance Math. Econom. 51 (2012), no. 1, 142–150. 10.1016/j.insmatheco.2012.03.008Suche in Google Scholar

[17] T. Rolski, H. Schmidli, V. Schmidt and J. Teugels, Stochastic Processes for Insurance and finance, Wiley Ser. Probab. Stat., John Wiley & Sons, Chichester, 1999. 10.1002/9780470317044Suche in Google Scholar

[18] S. S. Wang, Premium calculation by transforming the layer premium density, Astin Bull. 26 (1996), 71–92. 10.2143/AST.26.1.563234Suche in Google Scholar

[19] M. E. Yaari, The dual theory of choice under risk, Econometrica 55 (1987), no. 1, 95–115. 10.2307/1911158Suche in Google Scholar

Received: 2020-03-28
Revised: 2022-09-13
Accepted: 2022-09-21
Published Online: 2022-10-14
Published in Print: 2023-09-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/strm-2020-0007/pdf?lang=de
Button zum nach oben scrollen