Startseite Wirtschaftswissenschaften On the extension property of dilatation monotone risk measures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the extension property of dilatation monotone risk measures

  • Massoomeh Rahsepar und Foivos Xanthos EMAIL logo
Veröffentlicht/Copyright: 17. Dezember 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let 𝒳 be a subset of L 1 that contains the space of simple random variables ℒ and ρ : X ( - , ] a dilatation monotone functional with the Fatou property. In this note, we show that 𝜌 extends uniquely to a σ ( L 1 , L ) lower semicontinuous and dilatation monotone functional ρ ¯ : L 1 ( - , ] . Moreover, ρ ¯ preserves monotonicity, (quasi)convexity and cash-additivity of 𝜌. We also study conditions under which ρ ¯ preserves finiteness on a larger domain. Our findings complement extension and continuity results for (quasi)convex law-invariant functionals. As an application of our results, we show that transformed norm risk measures on Orlicz hearts admit a natural extension to L 1 that retains robust representations.

MSC 2010: 91B30; 91G80; 46E30

Award Identifier / Grant number: RGPIN-2019-05518

Funding statement: This research was supported by an NSERC Discovery Grant (RGPIN-2019-05518). This first author is also supported by an Ontario Graduate Scholarship.

Acknowledgements

The authors would like to thank Niushan Gao for valuable comments that improved the exposition of the manuscript. We also thank an anonymous reviewer for the insightful observations that led to include the discussion on the finiteness of ρ ¯ .

References

[1] C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis. A Hitchhiker’s Guide, 3rd ed., Springer, Berlin, 2006. Suche in Google Scholar

[2] S. Chen, N. Gao and F. Xanthos, The strong Fatou property of risk measures, Depend. Model. 6 (2018), no. 1, 183–196. 10.1515/demo-2018-0012Suche in Google Scholar

[3] P. Cheridito and T. Li, Dual characterization of properties of risk measures on Orlicz hearts, Math. Financ. Econ. 2 (2008), no. 1, 29–55. 10.1007/s11579-008-0013-7Suche in Google Scholar

[4] P. Cheridito and T. Li, Risk measures on Orlicz hearts, Math. Finance 19 (2009), no. 2, 189–214. 10.1111/j.1467-9965.2009.00364.xSuche in Google Scholar

[5] A. S. Cherny and P. G. Grigoriev, Dilatation monotone risk measures are law invariant, Finance Stoch. 11 (2007), no. 2, 291–298. 10.1007/s00780-007-0034-8Suche in Google Scholar

[6] D. Dentcheva, S. Penev and A. Ruszczyński, Kusuoka representation of higher order dual risk measures, Ann. Oper. Res. 181 (2010), 325–335. 10.1007/s10479-010-0747-5Suche in Google Scholar

[7] G. A. Edgar and L. Sucheston, Stopping Times and Directed Processes, Encyclopedia Math. Appl. 47, Cambridge University, Cambridge, 1992. 10.1017/CBO9780511574740Suche in Google Scholar

[8] I. Ekeland and R. Témam, Convex Analysis and Variational Problems, Classics Appl. Math. 28, Society for Industrial and Applied Mathematics, Philadelphia, 1999. 10.1137/1.9781611971088Suche in Google Scholar

[9] D. Filipović and M. Kupper, Monotone and cash-invariant convex functions and hulls, Insurance Math. Econom. 41 (2007), no. 1, 1–16. 10.1016/j.insmatheco.2006.08.003Suche in Google Scholar

[10] D. Filipović and G. Svindland, The canonical model space for law-invariant convex risk measures is L 1 , Math. Finance 22 (2012), no. 3, 585–589. 10.1111/j.1467-9965.2012.00534.xSuche in Google Scholar

[11] H. Föllmer and A. Schied, Stochastic Finance: An Introduction in Discrete Time, 4th ed., De Gruyter Grad., De Gruyter, Berlin, 2016. 10.1515/9783110463453Suche in Google Scholar

[12] M. Frittelli and M. Maggis, Conditional certainty equivalent, Int. J. Theor. Appl. Finance 14 (2011), no. 1, 41–59. 10.1142/9789814407892_0013Suche in Google Scholar

[13] N. Gao, D. Leung, C. Munari and F. Xanthos, Fatou property, representations, and extensions of law-invariant risk measures on general Orlicz spaces, Finance Stoch. 22 (2018), no. 2, 395–415. 10.1007/s00780-018-0357-7Suche in Google Scholar

[14] N. Gao and F. Xanthos, On the C-property and w * -representations of risk measures, Math. Finance 28 (2018), no. 2, 748–754. 10.1111/mafi.12150Suche in Google Scholar

[15] M. Kaina and L. Rüschendorf, On convex risk measures on L p -spaces, Math. Methods Oper. Res. 69 (2009), no. 3, 475–495. 10.1007/s00186-008-0248-3Suche in Google Scholar

[16] P. Koch-Medina and C. Munari, Law-invariant risk measures: Extension properties and qualitative robustness, Statist. Risk Modeling 31 (2014), no. 3, 1–22. 10.1515/strm-2014-0002Suche in Google Scholar

[17] V. Krätschmer, A. Schied and H. Zähle, Comparative and qualitative robustness for law-invariant risk measures, Finance Stoch. 18 (2014), no. 2, 271–295. 10.1007/s00780-013-0225-4Suche in Google Scholar

[18] J. Leitner, Balayage monotonous risk measures, Int. J. Theor. Appl. Finance 7 (2004), no. 7, 887–900. 10.1142/S0219024904002724Suche in Google Scholar

[19] F.-B. Liebrich and G. Svindland, Efficient allocations under law-invariance: A unifying approach, J. Math. Econom. 84 (2019), 28–45. 10.1016/j.jmateco.2019.05.002Suche in Google Scholar

[20] T. Mao and R. Wang, Risk aversion in regulatory capital principles, SIAM J. Financial Math. 11 (2020), no. 1, 169–200. 10.1137/18M121842XSuche in Google Scholar

[21] G. Svindland, Continuity properties of law-invariant (quasi-)convex risk functions on L , Math. Financ. Econ. 3 (2010), no. 1, 39–43. 10.1007/s11579-010-0026-xSuche in Google Scholar

[22] G. Svindland, Dilatation monotonicity and convex order, Math. Financ. Econ. 8 (2014), no. 3, 241–247. 10.1007/s11579-013-0112-ySuche in Google Scholar

[23] M. Tantrawan and D. H. Leung, On closedness of law-invariant convex sets in rearrangement invariant spaces, Arch. Math. (Basel) 114 (2020), no. 2, 175–183. 10.1007/s00013-019-01398-3Suche in Google Scholar

[24] R. Wang, Y. Wei and G. E. Willmot, Characterization, robustness, and aggregation of signed Choquet integrals, Math. Oper. Res. 45 (2020), no. 3, 993–1015. 10.1287/moor.2019.1020Suche in Google Scholar

[25] A. C. Zaanen, Riesz Spaces. II, North-Holland Math. Libr. 30, North-Holland, Amsterdam, 1983. Suche in Google Scholar

Received: 2020-02-26
Revised: 2020-11-14
Accepted: 2020-11-30
Published Online: 2020-12-17
Published in Print: 2021-11-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/strm-2020-0006/html?lang=de
Button zum nach oben scrollen