Home Business & Economics Extremes for multivariate expectiles
Article
Licensed
Unlicensed Requires Authentication

Extremes for multivariate expectiles

  • Véronique Maume-Deschamps , Didier Rullière and Khalil Said EMAIL logo
Published/Copyright: November 14, 2018
Become an author with De Gruyter Brill

Abstract

Multivariate expectiles, a new family of vector-valued risk measures, were recently introduced in the literature. [22]. Here we investigate the asymptotic behavior of these measures in a multivariate regular variation context. For models with equivalent tails, we propose an estimator of extreme multivariate expectiles in the Fréchet domain of attraction case with asymptotic independence, or for comonotonic marginal distributions.

MSC 2010: 62H00; 62P05; 91B30

A Proofs

A.1 Lemma 3.2

Proof.

We give some details on the proof for the first item, the second one may be obtained in the same way.

Under Assumption 1, for all i{1,,d}, F¯XiRV-θ(+). There exists, for all i, a positive measurable function LiRV0(+) such that

F¯Xi(x)=x-θLi(x)for allx>0.

Then, for all (i,j){1,,d}2 and all t,s>0,

sF¯Xi(s)tF¯Xj(t)=(st)-θ+1Li(s)Lj(t)=(st)-θ+1Li(s)Li(t)Li(t)Lj(t),

and under Assumption 1,

limx+Li(x)Lj(x)=cicj.

Using Karamata’s representation for slowly varying functions (Theorem 2.2), there exist a constant c>0, a positive measurable function c() with limx+c(x)=c>0 such that for all ϵ>0, there exists t0 such that for all t>t0,

Li(s)Li(t)(st)ϵc(s)c(t).

Taking 0<ϵ<θ-1, we conclude

limt+sF¯Xi(s)tF¯Xj(t)=0for all(i,j){1,,d}2.

A.2 Proposition 3.1(ii)

Proof.

We start by proving

lim¯α11-αF¯Xi(𝐞αi(𝐗))<+for alli{2,,d}.

Using Assumption 1, it is sufficient to show

lim¯α11-αF¯X1(𝐞α1(𝐗))<+.

Assume that

lim¯α11-αF¯X1(𝐞α1(𝐗))=+.

We shall prove that, in this case, (3.3) cannot be satisfied. Taking, if necessary, a subsequence (αn1), we may assume that

limα11-αF¯X1(𝐞α1(𝐗))=+.

We have (recall (3.1))

lX1α(x1)(1-α)x1=(α𝔼[(X1-x1)+]-(1-α)𝔼[(X1-x1)-](1-α)x1)=((2α-1)𝔼[(X1-x1)+](1-α)x1-(1-α)(x1-𝔼[X1])(1-α)x1)=((2α-1)𝔼[(X1-x1)+]x1F¯X1(x1)F¯X1(x1)1-α-1+𝔼[X1]x1)α1-1.

Furthermore, for all i{2,,d},

lXi,X1α(xi,x1)(1-α)x1=(α𝔼[(Xi-xi)+𝟙{X1>x1}]-(1-α)𝔼[(Xi-xi)-𝟙{X1<x1}](1-α)x1)=(α𝔼[(Xi-xi)+𝟙{X1>x1}](1-α)x1-𝔼[(Xi-xi)+𝟙{X1<x1}]x1-xi(X1<x1)x1+𝔼[Xi𝟙{X1<x1}]x1).

On one side,

𝔼[(Xi-xi)+𝟙{X1>x1}](1-α)x1𝔼[(Xi-xi)+](1-α)x1=F¯X1(x1)1-α𝔼[(Xi-xi)+]xiF¯Xi(xi)xiF¯Xi(xi)x1F¯X1(x1)for alli{2,,d},

so that Lemma 3.2 implies

limα1𝔼[(Xi-xi)+𝟙{X1>x1}](1-α)x1=0for allkJC1J1.

Let iJ01. Taking, if necessary, a subsequence, we may assume that xix10, and therefore,

(A.1)𝔼[(Xi-xi)+𝟙{X1>x1}](1-α)x1=xix1(Xi>t,X1>x1)dt(1-α)x1+x1+(Xi>t,X1>x1)dt(1-α)x1.

Now,

xix1(Xi>t,X1>x1)dt(1-α)x1xix1(X1>x1)dt(1-α)x1=F¯X1(x1)1-α(1-xix1).

Thus

limα1xix1(Xi>t,X1>x1)dt(1-α)x1=0.

Consider the second term of (A.1)

x1+(Xi>t,X1>x1)dt(1-α)x1x1+(Xi>t)dt(1-α)x1.

Karamata’s theorem (Theorem 2.3) gives

x1+(Xk>t)dt(1-α)x1α11θ-1F¯Xk(x1)1-α,

which leads to

limα1x1+(Xi>t,X1>x1)dt(1-α)x1=0.

Finally, we get

limα1𝔼[(Xi-xi)+𝟙{X1>x1}](1-α)x1=0for alliJ01.

We have shown

limα1𝔼[(Xk-xk)+𝟙{X1>x1}](1-α)x1=0for allk{2,,d},

so the first equation of optimality system (3.3) implies

-limα1(kJ01J1lXk,X1α(xk,x1)(1-α)x1+kJC1lXk,X1α(xk,x1)(1-α)x1+kJ1lXk,X1α(xk,x1)(1-α)x1)=limα1k=2dxkx1=-1.

This is absurd since the xk’s are non-negative, and consequently

lim¯α11-αF¯X1(x1)<+.

Now, we prove that the components of the extreme multivariate expectile also satisfy

0<lim¯α11-αF¯Xi(𝐞αi(𝐗))for alli{2,,d}.

Using Assumption 1, it is sufficient to show

0<lim¯α11-αF¯X1(𝐞α1(𝐗)).

Let us assume that

lim¯α11-αF¯X1(𝐞α1(𝐗))=0.

We shall see that, in this case, (3.3) cannot be satisfied. Taking, if necessary, a convergent subsequence, we may assume

limα11-αF¯X1(𝐞α1(𝐗))=0.

In this case,

lX1α(x1)x1F¯X1(x1)=((2α-1)𝔼[(X1-x1)+]x1F¯X1(x1)-1-αF¯1(x1)(1-𝔼[X1]x1))α11θ-1>0.

On another side, let iJ1. Taking, if necessary, a subsequence, we may assume x1=o(xi). Lemma 3.2 and Proposition 3.1(ii) give

1-αF¯1(x1)xix1=1-αF¯Xi(xi)xiF¯Xi(xi)x1F¯X1(x1)0asα1.

Moreover,

𝔼[(Xi-xi)+𝟙{X1>x1}]x1F¯X1(x1)𝔼[(Xi-xi)+]x1F¯X1(x1)=𝔼[(Xi-xi)+]xiF¯Xi(xi)xiF¯Xi(xi)x1F¯X1(x1).

We deduce

lXi,X1α(xi,x1)x1F¯X1(x1)=(α𝔼[(Xi-xi)+𝟙{X1>x1}]-(1-α)𝔼[(Xi-xi)-𝟙{X1<x1}]x1F¯X1(x1))0for alliJ1.

Going through the limit (α1) in the first equation of the optimality system (3.3), divided by x1F¯X1(x1), leads to

limα1kJ01JC1J1lXk,X1α(xk,x1)x1F¯X1(x1)=-1θ-1,

which is absurd because

limα1kJ01JC1J1lXk,X1α(xk,x1)x1F¯X1(x1)=limα1kJ01JC1J1(α𝔼[(Xk-xk)+𝟙{X1>x1}]-(1-α)𝔼[(Xk-xk)-𝟙{X1<x1}]x1F¯X1(x1))=limα1kJ01JC1J1(𝔼[(Xk-xk)+𝟙{X1>x1}]x1F¯X1(x1)-1-αF¯X1(x1)xkx1)=limα1kJ01JC1J1(𝔼[(Xk-xk)+𝟙{X1>x1}]x1F¯X1(x1))0.

We can finally conclude that

lim¯α11-αF¯X1(x1)>0.

A.3 Lemma 3.4

Proof.

Since the random vector 𝐗 is comonotonic, its survival copula is

C¯𝐗(u1,,ud)=min(u1,,ud)for all(u1,,ud)[0,1]d.

We deduce the expression of the functions λUij,

λUij(xi,xj)=min(xi,xj)for all(xi,xj)+2and alli,j{1,,d}.

So

1+λUik(t-θ,ckci(βkβi)-θ)dt=1+min(t-θ,ckci(βkβi)-θ)dt=(βkβi(ckci)-1θ-1)+ckci(βkβi)-θ+1θ-1(1+(βkβi(ckci)-1θ-1)+)-θ+1.

Under Assumption 1 and by Proposition 3.3, let (η,β2,,βd) be a solution of the equation system

ηi=1dβi-1θ-1i=1dciβi-θ+1=i=1,ikdckβk-θβi(βkβi(ckci)-1θ-1)++1θ-1i=1,ikdciβi-θ+1[(1+(βkβi(ckci)-1θ-1)+)-θ+1-1]

for all k{1,,d}. So η=1θ-1 and βk=ck1θ is the only solution to this system. ∎

A.4 Lemma 4.2(i)

Proof.

Taking, if necessary, a convergent subsequence (αn)n, αn1, we consider that the limits

limα1xix1=βi

exist.

Using the notation JC={i{2,,d}0<βi<+}, for all iJC,

limα1𝔼[(Xi-xi)+𝟙{X1>x1}]x1F¯X1(x1)=limα1βi+(Xi>tx1,X1>x1)(X1>x1)dt

because

(Xi>tx1,X1>x1)(X1>x1)=(Xi>tx1X1>x1)1.

On another hand,

(Xi>tx1,X1>x1)(X1>x1)min{1,(Xi>tx1)(X1>x1)}

and

(Xi>tx1)(X1>x1)=F¯Xi(tx1)F¯X1(tx1)F¯X1(tx1)F¯X1(x1).

Then, using

limα1F¯Xi(tx1)F¯X1(tx1)=0

and Potter’s bounds (2.4) associated to F¯X1, we deduce that, for all ϵ1>0 and 0<ϵ2<1, there exists x10(ϵ1,ϵ2) such that

(Xi>tx1)(X1>x1)ϵ1(1+ϵ2)max(t-θ+ϵ2,t-θ-ϵ2)forx1x10(ϵ1,ϵ2)min{1,βi}.

Application of the dominated convergence theorem leads to

limα1𝔼[(Xi-xi)+𝟙{X1>x1}]x1F¯X1(x1)=βi+limα1(Xi>tx1,X1>x1)(X1>x1)dt=0for alliJC.

We denote by J the set J={i{2,,d}βi=+}. So, for all iJ, x1=o(xi) and

𝔼[(Xi-xi)+𝟙{X1>x1}]x1F¯X1(x1)=xi+(Xi>t,X1>x1)x1(X1>x1)dtx1+(Xi>t,X1>x1)x1(X1>x1)dt=1+(Xi>tx1,X1>x1)(X1>x1)dt.

In the same way as in the previous case and using Potter’s bounds, we show that

limα11+(Xi>tx1,X1>x1)(X1>x1)dt=1+limα1(Xi>tx1,X1>x1)(X1>x1)dt=0,

from which we deduce

limα1𝔼[(Xi-xi)+𝟙{X1>x1}]x1F¯X1(x1)=0for alliJ.

Let J0 be the set J0={i{2,,d}βi=0}. For all iJ0, we have xi=o(x1). Then

limα1𝔼[(Xi-xi)+𝟙{X1>x1}]x1F¯X1(x1)=limα1xi+(Xi>t,X1>x1)x1(X1>x1)dt=limα10+(Xi>tx1,X1>x1)(X1>x1)dt

because

limα1xix1=0and(Xi>tx1,X1>x1)(X1>x1)1.

In addition, for all ϵ>0, we have

limα1ϵ+(Xi>tx1,X1>x1)(X1>x1)dt=0

because the dominated convergence theorem is applicable using Potter’s bounds and

limα1(Xi>tx1,X1>x1)(X1>x1)=0for allt>0

since ci=0.

Let κ>0. For all ϵ>0, there exists α0 such that, for all α>α0,

ϵ+(Xi>tx1,X1>x1)(X1>x1)dt<κ.

Then

0+(Xi>tx1,X1>x1)(X1>x1)dt=0ϵ(Xi>tx1,X1>x1)(X1>x1)dt+ϵ+(Xi>tx1,X1>x1)(X1>x1)dt<ϵ+κ.

We deduce

limα10+(Xi>tx1,X1>x1)(X1>x1)dt=0,

so

limα1𝔼[(Xi-xi)+𝟙{X1>x1}]x1F¯X1(x1)=0for alliJ0.

We have therefore shown that

limα1𝔼[(Xi-xi)+𝟙{X1>x1}]x1F¯X1(x1)=0for alli{2,,d}.

A.5 Lemma 4.2(ii)

Proof.

We suppose that

lim¯α11-αF¯X1(𝐞α1(𝐗))=+.

Taking if necessary a convergent subsequence (αn)n with αn1, we consider that the limits limα1xix1=βi exist and that

limα11-αF¯X1(x1)=+.

We use the notations

JC={i{2,,d}0<βi<+},
J0={i{2,,d}βi=0},
J={i{2,,d}βi=+}.

The first equation of the optimality system (1.1) divided by x1F¯X1(x1) can be written as

(2α-1)𝔼[(X1-x1)+]x1F¯X1(x1)+i=2dα𝔼[(Xi-xi)+𝟙{X1>x1}]x1F¯X1(x1)=1-αF¯X1(x1)(x1-𝔼[X1]x1)+1-αF¯X1(x1)(i=2d𝔼[(Xi-xi)-𝟙{X1<x1}]x1).

By (3.1),

limα1(2α-1)𝔼[(X1-x1)+]x1F¯X1(x1)=1θ-1,

and by Lemma 4.2,

limα1i=2dα𝔼[(Xi-xi)+𝟙{X1>x1}]x1F¯X1(x1)=0,

so going through the limit (α1) in the previous equation leads to

limα11-αF¯X1(x1)(x1-𝔼[X1]x1+i=2d𝔼[(Xi-xi)-𝟙{X1<x1}]x1)=1θ-1.

Nevertheless,

limα11-αF¯X1(x1)(x1-𝔼[X1]x1+i=2d𝔼[(Xi-xi)-𝟙{X1<x1}]x1)=limα11-αF¯X1(x1)(1+i=2dxix1)=+.

From this contradiction, we deduce that the case

limα11-αF¯X1(x1)=+

is absurd.

Now, we suppose that

lim¯α11-αF¯X1(𝐞α1(𝐗))=0.

Taking, if necessary, a subsequence (αn)n with αn1, we consider that the limits limα1xix1=βi exist and that

limα11-αF¯X1(x1)=0.

We denote

JC={i{2,,d}0<βi<+},J0={i{2,,d}βi=0},J={i{2,,d}βi=+}.

Going through the limit (α1) in the first equation of system (1.1) divided by x1F¯X1(x1) and using Lemma 4.2 and equation (3.1) leads to

(A.2)limα1(1-αF¯X1(x1)iJxix1)=1θ-1.

If J, then there exists i{2,,d} such that iJ. In this case,

limα1𝔼[(Xi-xi)+]x1F¯X1(x1)=limα1F¯Xi(xi)F¯X1(xi)xiF¯X1(xi)x1F¯X1(x1)𝔼[(Xi-xi)+]xiF¯Xi(xi)=0

because

limα1𝔼[(Xi-xi)+]xiF¯Xi(xi)=1θ-1,limα1F¯Xi(xi)F¯X1(xi)=0,

and by Lemma 3.2, (Xi=Xj=X1),

limα1xiF¯X1(xi)x1F¯X1(x1)=0.

On another hand, for all j{1,,d}{i},

𝔼[(Xj-xj)+𝟙{Xi>xi}]x1F¯X1(x1)=xj+(Xj>t,Xi>xi)x1(X1>x1)dt,

so if jJC, then

limα1𝔼[(Xj-xj)+𝟙{Xi>xi}]x1F¯X1(x1)=limα1xjx1+(Xj>tx1,Xi>xi)(X1>x1)dt=limα1βj+(Xj>tx1,Xi>xi)(X1>x1)dt

because

(Xj>tx1,Xi>xi)(X1>x1)(Xj>tx1)(X1>x1)andlimα1(Xj>tx1)(X1>x1)=0for allt>0.

We apply the dominated convergence theorem, using Potter’s bounds associated to F¯X1, to get

limα1𝔼[(Xj-xj)+𝟙{Xi>xi}]x1F¯X1(x1)=βj+limα1(Xj>tx1,Xi>xi)(X1>x1)dt,

and since

(Xj>tx1,Xi>xi)(X1>x1)(Xi>xi)(X1>x1)=x1xixiF¯X1(xi)x1F¯X1(x1)F¯Xi(xi)F¯X1(xi),

so, by Lemma 3.2,

limα1(Xj>tx1,Xi>xi)(X1>x1)=limα1(Xi>xi)(X1>x1)=0,

we finally deduce that

limα1𝔼[(Xj-xj)+𝟙{Xi>xi}]x1F¯X1(x1)=0for alljJC.

If jJ{i}, then

𝔼[(Xj-xj)+𝟙{Xi>xi}]x1F¯X1(x1)=xj+(Xj>t,Xi>xi)x1(X1>x1)dtx1+(Xj>t,Xi>xi)x1(X1>x1)dt=1+(Xj>tx1,Xi>xi)(X1>x1)dt.

We show in the same way as in the previous case that

limα11+(Xj>tx1,Xi>xi)(X1>x1)dt=1+limα1(Xj>tx1,Xi>xi)(X1>x1)dt=0,

and then

limα1𝔼[(Xj-xj)+𝟙{Xi>xi}]x1F¯X1(x1)=0for alljJ{i}.

If jJ0, then

𝔼[(Xj-xj)+𝟙{Xi>xi}]x1F¯X1(x1)=xjx1(Xj>tx1,Xi>xi)x1(X1>x1)dt+x1(Xj>tx1,Xi>xi)x1(X1>x1)dtx1-xjx1F¯Xi(xi)F¯X1(x1)+1+(Xj>tx1,Xi>xi)(X1>x1)dt

since

limα11+(Xj>tx1,Xi>xi)(X1>x1)dt=0,

so, by Lemma 3.2, we get

limα1x1-xjx1F¯Xi(xi)F¯X1(x1)=limα1x1-xjx1F¯Xi(xi)F¯X1(xi)xiF¯X1(xi)x1F¯X1(x1)x1xi=0.

Therefore, we obtain

limα1𝔼[(Xj-xj)+𝟙{Xi>xi}]x1F¯X1(x1)=0for alljJ0,

and consequently this holds for all j{1,,d}{i}. The i-th equation of system (1.1) divided by x1F¯X1(x1) can be written in the form

(2α-1)𝔼[(Xi-xi)+]x1F¯X1(x1)-1-αF¯X1(x1)xi-𝔼[Xi]x1=j=1jid(1-α)𝔼[(Xj-xj)-𝟙{Xi<xi}]x1F¯X1(x1)-j=1jidα𝔼[(Xj-xj)+𝟙{Xi>xi}]x1F¯X1(x1).

Going through the limit (α1) in this equation leads to

-limα11-αF¯X1(x1)xix1=limα11-αF¯X1(x1)j=1jidxjx1,

which is possible only if limα11-αF¯X1(x1)xix1=0, and that is contradictory to equation (A.2). ∎

Acknowledgements

We thank the editor and reviewers for their valuable comments which have helped greatly improve the quality of the manuscript.

References

[1] H. Albrecher, S. R. Asmussen and D. Kortschak, Tail asymptotics for the sum of two heavy-tailed dependent risks, Extremes 9 (2006), no. 2, 107–130. 10.1007/s10687-006-0011-1Search in Google Scholar

[2] A. V. Asimit, E. Furman, Q. Tang and R. Vernic, Asymptotics for risk capital allocations based on conditional tail expectation, Insurance Math. Econom. 49 (2011), no. 3, 310–324. 10.1016/j.insmatheco.2011.05.002Search in Google Scholar

[3] J. Beirlant, Y. Goegebeur, J. Teugels and J. Segers, Statistics of Extremes, Wiley Ser. Probab. Stat., John Wiley & Sons, Chichester, 2004. 10.1002/0470012382Search in Google Scholar

[4] F. Bellini and V. Bignozzi, On elicitable risk measures, Quant. Finance 15 (2015), no. 5, 725–733. 10.1080/14697688.2014.946955Search in Google Scholar

[5] F. Bellini and E. Di Bernardino, Risk management with expectiles, European J. Finance 23 (2017), no. 6, 487–506. 10.1080/1351847X.2015.1052150Search in Google Scholar

[6] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Encyclopedia Math. Appl. 27, Cambridge University Press, Cambridge, 1987. 10.1017/CBO9780511721434Search in Google Scholar

[7] A. Charpentier and J. Segers, Tails of multivariate Archimedean copulas, J. Multivariate Anal. 100 (2009), no. 7, 1521–1537. 10.1016/j.jmva.2008.12.015Search in Google Scholar

[8] P. Chaudhuri, On a geometric notion of quantiles for multivariate data, J. Amer. Statist. Assoc. 91 (1996), no. 434, 862–872. 10.1080/01621459.1996.10476954Search in Google Scholar

[9] L. de Haan and A. Ferreira, Extreme Value Theory. An Introduction, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2006. 10.1007/0-387-34471-3Search in Google Scholar

[10] L. de Haan and S. I. Resnick, Limit theory for multivariate sample extremes, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 40 (1977), no. 4, 317–337. 10.1007/BF00533086Search in Google Scholar

[11] E. Di Bernardino and C. Prieur, Estimation of the multivariate conditional tail expectation for extreme risk levels: Illustration on environmental data sets, Environmetrics (2018), 10.1002/env.2510. 10.1002/env.2510Search in Google Scholar

[12] P. Embrechts, D. D. Lambrigger and M. V. Wüthrich, Multivariate extremes and the aggregation of dependent risks: Examples and counter-examples, Extremes 12 (2009), no. 2, 107–127. 10.1007/s10687-008-0071-5Search in Google Scholar

[13] P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events, Stoch. Model. Appl. Probab. 33, Springer, Berlin, 1997. 10.1007/978-3-642-33483-2Search in Google Scholar

[14] S. Girard and G. Stupfler, Extreme geometric quantiles in a multivariate regular variation framework, Extremes 18 (2015), no. 4, 629–663. 10.1007/s10687-015-0226-0Search in Google Scholar

[15] K. Herrmann, M. Hofert and M. Mailhot, Multivariate geometric expectiles, Scand. Actuar. J. (2018), no. 7, 629–659. 10.1080/03461238.2018.1426038Search in Google Scholar

[16] B. M. Hill, A simple general approach to inference about the tail of a distribution, Ann. Statist. 3 (1975), no. 5, 1163–1174. 10.1214/aos/1176343247Search in Google Scholar

[17] H. Joe, H. Li and A. K. Nikoloulopoulos, Tail dependence functions and vine copulas, J. Multivariate Anal. 101 (2010), no. 1, 252–270. 10.1016/j.jmva.2009.08.002Search in Google Scholar

[18] O. Kallenberg, Random Measures, 3rd ed., Akademie, Berlin, 1983. 10.1515/9783112525609Search in Google Scholar

[19] C. Klüppelberg, G. Kuhn and L. Peng, Semi-parametric models for the multivariate tail dependence function—the asymptotically dependent case, Scand. J. Stat. 35 (2008), no. 4, 701–718. 10.1111/j.1467-9469.2008.00602.xSearch in Google Scholar

[20] H. Li and Y. Sun, Tail dependence for heavy-tailed scale mixtures of multivariate distributions, J. Appl. Probab. 46 (2009), no. 4, 925–937. 10.1239/jap/1261670680Search in Google Scholar

[21] T. Mao and F. Yang, Risk concentration based on expectiles for extreme risks under FGM copula, Insurance Math. Econom. 64 (2015), 429–439. 10.1016/j.insmatheco.2015.06.009Search in Google Scholar

[22] V. Maume-Deschamps, D. Rullière and K. Said, Multivariate extensions of expectiles risk measures, Depend. Model. 5 (2017), no. 1, 20–44. 10.1515/demo-2017-0002Search in Google Scholar

[23] A. J. McNeil and J. Nešlehová, Multivariate Archimedean copulas, d-monotone functions and l1-norm symmetric distributions, Ann. Statist. 37 (2009), no. 5B, 3059–3097. 10.1214/07-AOS556Search in Google Scholar

[24] T. Mikosch, Modeling dependence and tails of financial time series, Extreme Values in Finance, Telecommunications, and the Environment, Chapman and Hall/CRC, Boca Raton (2003), 185–286. 10.1201/9780203483350.ch5Search in Google Scholar

[25] W. K. Newey and J. L. Powell, Asymmetric least squares estimation and testing, Econometrica 55 (1987), no. 4, 819–847. 10.2307/1911031Search in Google Scholar

[26] S. I. Resnick, Heavy-tail Phenomena: Probabilistic and Statistical Modeling, Springer, New York, 2007. Search in Google Scholar

[27] S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer, New York, 2013. Search in Google Scholar

[28] H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statist. 22 (1951), 400–407. 10.1214/aoms/1177729586Search in Google Scholar

[29] I. Weissman, Estimation of parameters and large quantiles based on the k largest observations, J. Amer. Statist. Assoc. 73 (1978), no. 364, 812–815. 10.2307/1426930Search in Google Scholar

[30] C. Weng and Y. Zhang, Characterization of multivariate heavy-tailed distribution families via copula, J. Multivariate Anal. 106 (2012), 178–186. 10.1016/j.jmva.2011.12.001Search in Google Scholar

Received: 2017-04-18
Revised: 2018-10-17
Accepted: 2018-10-17
Published Online: 2018-11-14
Published in Print: 2018-12-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/strm-2017-0014/html
Scroll to top button