Abstract
Understanding how people make decisions from risky choices has attracted increasing attention of researchers in economics, psychology and neuroscience. While economists try to evaluate individual’s risk preference through mathematical modeling, neuroscientists answer the question by exploring the neural activities of the brain. We propose a model-free method, 3-dimensional image functional principal component analysis (3DIF), to provide a connection between active risk related brain region detection and individual’s risk preference. The 3DIF methodology is directly applicable to 3-dimensional image data without artificial vectorization or mapping and simultaneously guarantees the contiguity of risk related brain regions rather than discrete voxels. Simulation study evidences an accurate and reasonable region detection using the 3DIF method. In real data analysis, five important risk related brain regions are detected, including parietal cortex (PC), ventrolateral prefrontal cortex (VLPFC), lateral orbifrontal cortex (lOFC), anterior insula (aINS) and dorsolateral prefrontal cortex (DLPFC), while the alternative methods only identify limited risk related regions. Moreover, the 3DIF method is useful for extraction of subjective specific signature scores that carry explanatory power for individual’s risk attitude. In particular, the 3DIF method perfectly classifies both strongly and weakly risk averse subjects for in-sample analysis. In out-of-sample experiment, it achieves 73 -88 overall accuracy, among which 90 -100 strongly risk averse subjects and 49 -71 weakly risk averse subjects are correctly classified with leave-k-out cross validations.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: SFB 649 “Economic Risk”
Award Identifier / Grant number: International Research Training Group (IRTG) 1792 “High-Dimensional Non-Stationary Time Series”
Funding statement: This research was supported by the FRC grant and IDS grant at the National University of Singapore. The authors also acknowledge the support of the Deutsche Forschungsgemeinschaft through the SFB 649 “Economic Risk” and the International Research Training Group (IRTG) 1792 “High-Dimensional Non-Stationary Time Series”.
References
[1] C. Amiez, J.-P. Joseph and E. Procyk, Reward encoding in the monkey anterior cingulate cortex, Cerebral Cortex 16 (2006), no. 7, 1040–1055. 10.1093/cercor/bhj046Suche in Google Scholar
[2] A. H. Andersen, D. M. Gash and M. J. Avison, Principal component analysis of the dynamic response measured by fMRI: A generalized linear systems framework, Magn. Resonance Imag. 17 (1999), no. 6, 795–815. 10.1016/S0730-725X(99)00028-4Suche in Google Scholar
[3] R. B. Barsky, M. S. Kimball, F. T. Juster and M. D. Shapiro, Preference parameters and behavioral heterogeneity: An experimental approach in the health and retirement survey, Technical report, National Bureau of Economic Research, 1995. 10.3386/w5213Suche in Google Scholar
[4] R. Baumgartner, L. Ryner, W. Richter, R. Summers, M. Jarmasz and R. Somorjai, Comparison of two exploratory data analysis methods for fMRI: Fuzzy clustering vs. principal component analysis, Magn. Resonance Imag. 18 (2000), no. 1, 89–94. 10.1016/S0730-725X(99)00102-2Suche in Google Scholar
[5] R. M. W. J. Beetsma and P. C. Schotman, Measuring risk attitudes in a natural experiment: Data from the television game show lingo, Econom. J. 111 (2001), no. 474, 821–848. 10.1111/1468-0297.00661Suche in Google Scholar
[6] M. Behrmann, J. J. Geng and S. Shomstein, Parietal cortex and attention, Current Opinion Neurobiol. 14 (2004), 212–217. 10.1016/j.conb.2004.03.012Suche in Google Scholar PubMed
[7] C. Cortes and V. Vapnik, The nature of statistical learning theory, Mach. Learn. 20 (2005), 273–297. 10.1007/BF00994018Suche in Google Scholar
[8] H. D. Critchley, R. N. Melmed, E. Featherstone, C. J. Mathias and R. J. Dolan, Brain activity during biofeedback relaxation, Brain 124 (2001), no. 5, 1003–1012. 10.1093/brain/124.5.1003Suche in Google Scholar PubMed
[9] D. Degras and M. A. Lindquist, A hierarchical model for simultaneous detection and estimation in multi-subject fMRI studies, NeuroImage 98 (2014), 61–72. 10.1016/j.neuroimage.2014.04.052Suche in Google Scholar PubMed PubMed Central
[10] D. Fetherstonhaugh, P. Slovic, S. Johnson and J. Friedrich, Insensitivity to the value of human life: A study of psychophysical numbing, J. Risk Uncertainty 14 (1997), no. 3, 283–300. 10.1023/A:1007744326393Suche in Google Scholar
[11] K. J. Friston, A. P. Holmes, K. J. Worsley, J. B. Poline, C. Frith and R. S. J. Frackowiak, Statistical parametric maps in functional imaging: A general linear approach, Human Brain Mapping 2 (1995), 189–210. 10.1002/hbm.460020402Suche in Google Scholar
[12] G. H. Glover, Deconvolution of impulse response in event-related bold fMRI, Neuroimage 9 (1999), no. 4, 416–429. 10.1006/nimg.1998.0419Suche in Google Scholar PubMed
[13] G. H. Golub and C. Reinsch, Handbook Series Linear Algebra: Singular value decomposition and least squares solutions, Numer. Math. 14 (1970), no. 5, 403–420. 10.1007/BF02163027Suche in Google Scholar
[14] J. Grinband, J. Hirsch and V. P. Ferrera, A neural representation of categorization uncertainty in the human brain, Neuron 49 (2006), no. 5, 757–763. 10.1016/j.neuron.2006.01.032Suche in Google Scholar PubMed
[15] J. Grinband, T. D. Wager, M. Lindquist, V. P. Ferrera and J. Hirsch, Detection of time-varying signals in event-related fMRI designs, Neuroimage 43 (2008), no. 3, 509–520. 10.1016/j.neuroimage.2008.07.065Suche in Google Scholar PubMed PubMed Central
[16] D. J. Hand and W. E. Henley, Statistical classification methods in consumer credit scoring: A review, J. Roy. Statist. Soc. Ser. A 160 (1997), no. 3, 523–541. 10.1111/j.1467-985X.1997.00078.xSuche in Google Scholar
[17] W. K. Härdle and L. Simar, Applied Multivariate Statistical Analysis, 4th ed., Springer, Heidelberg, 2015. 10.1007/978-3-662-45171-7Suche in Google Scholar
[18] H. R. Heekeren, S. Marrett and L. G. Ungerleider, The neural systems that mediate human perceptual decision making, Nat. Rev. Neurosci. 9 (2008), 467–479. 10.1038/nrn2374Suche in Google Scholar PubMed
[19] R. Heller, D. Stanley, D. Yekutieli, N. Rubin and Y. Benjamini, Cluster-based analysis of FMRI data, NeuroImage 33 (2006), no. 2, 599–608. 10.1016/j.neuroimage.2006.04.233Suche in Google Scholar PubMed
[20] S. A. Huettel, A. W. Song and G. McCarthy, Decisions under uncertainty: Probabilistic context influences activation of prefrontal and parietal cortices, J. Neurosci. 25 (2005), no. 13, 3304–3311. 10.1523/JNEUROSCI.5070-04.2005Suche in Google Scholar PubMed PubMed Central
[21] S. A. Huettel, C. J. Stowe, E. M. Gordon, B. T. Warner and M. L. Platt, Neural signatures of economic preferences for risk and ambiguity, Neuron 49 (2006), no. 5, 765–775. 10.1016/j.neuron.2006.01.024Suche in Google Scholar
[22] J. W. Kable and P. W. Glimcher, The neural correlates of subjective value during intertemporal choice, Nature Neurosci. 10 (2007), no. 12, 1625–1633. 10.1038/nn2007Suche in Google Scholar
[23] D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica 47 (1979), 263–291. 10.2307/1914185Suche in Google Scholar
[24] S. W. Kennerley, A. F. Dahmubed, A. H. Lara and J. D. Wallis, Neurons in the frontal lobe encode the value of multiple decision variables, J. Cognitive Neurosci. 21 (2009), no. 6, 1162–1178. 10.1162/jocn.2009.21100Suche in Google Scholar
[25] B. Knutson, J. Taylor, M. Kaufman, R. Peterson and G. Glover, Distributed neural representation of expected value, J. Neurosci. 25 (2005), no. 19, 4806–4812. 10.1523/JNEUROSCI.0642-05.2005Suche in Google Scholar
[26] C. M. Kuhnen and B. Knutson, The neural basis of financial risk taking, Neuron 47 (2005), no. 5, 763–770. 10.1016/j.neuron.2005.08.008Suche in Google Scholar
[27] S.-H. Lai and M. Fang, A novel local pca-based method for detecting activation signals in fMRI, Magn. Resonance Imag. 17 (1999), no. 6, 827–836. 10.1016/S0730-725X(99)00038-7Suche in Google Scholar
[28] G. F. Loewenstein, E. U. Weber, C. K. Hsee and N. Welch, Risk as feelings, Psychol. Bull. 127 (2001), no. 2, 267–286. 10.1037/0033-2909.127.2.267Suche in Google Scholar PubMed
[29] C. J. Long, E. N. Brown, C. Triantafyllou, I. Aharon, L. L. Wald and V. Solo, Nonstationary noise estimation in functional MRI, NeuroImage 28 (2005), no. 4, 890–903. 10.1016/j.neuroimage.2005.06.043Suche in Google Scholar PubMed
[30] H. Markowitz, Portfolio selection, J. Finance 7 (1952), no. 1, 77–91. 10.12987/9780300191677Suche in Google Scholar
[31] B. A. Mellers, Choice and the relative pleasure of consequences, Psychol. Bull. 126 (2000), no. 6, 910–924. 10.1037/0033-2909.126.6.910Suche in Google Scholar
[32] P. N. C. Mohr, G. Biele and H. R. Heekeren, Neural processing of risk, J. Neurosci. 30 (2010), no. 19, 6613–6619. 10.1523/JNEUROSCI.0003-10.2010Suche in Google Scholar
[33] P. N. C. Mohr, G. Biele, L. K. Krugel, S.-C. Li and H. R. Heekeren, Neural foundations of risk-return trade-off in investment decisions, NeuroImage 49 (2010), 2556–2563. 10.1016/j.neuroimage.2009.10.060Suche in Google Scholar
[34] M. P. Paulus, C. Rogalsky, A. Simmons, J. S. Feinstein and M. B. Stein, Increased activation in the right insula during risk-taking decision making is related to harm avoidance and neuroticism, NeuroImage 19 (2003), no. 4, 1439–1448. 10.1016/S1053-8119(03)00251-9Suche in Google Scholar
[35] H. Plassmann, J. O’Doherty and A. Rangel, Orbitofrontal cortex encodes willingness to pay in everyday economic transactions, J. Neurosci. 27 (2007), no. 37, 9984–9988. 10.1523/JNEUROSCI.2131-07.2007Suche in Google Scholar PubMed PubMed Central
[36] J. W. Pratt, Risk aversion in the small and in the large, Econometrica 44 (1964), 122–136. 10.2307/1913738Suche in Google Scholar
[37] K. Preuschoff, P. Bossaerts and S. R. Quartz, Neural differentiation of expected reward and risk in human subcortical structures, Neuron 51 (2006), no. 3, 381–390. 10.1016/j.neuron.2006.06.024Suche in Google Scholar PubMed
[38] K. Preuschoff, S. R. Quartz and Peter Bossaerts, Human insula activation reflects risk prediction errors as well as risk, J. Neurosci. 28 (2008), no. 11, 2745–2752. 10.1523/JNEUROSCI.4286-07.2008Suche in Google Scholar PubMed PubMed Central
[39] C. Radhakrishna Rao, Some statistical methods for comparison of growth curves, Biometrics 14 (1958), no. 1, 1–17. 10.2307/2527726Suche in Google Scholar
[40] J. O. Ramsay and B. W. Silverman, Functional Data Analysis, 2nd ed., Springer, New York, 2005. 10.1007/b98888Suche in Google Scholar
[41] A. Rangel, C. Camerer and P. R. Montague, A framework for studying the neurobiology of value-based decision making, Nat. Rev. Neurosci. 9 (2008), 545–556. 10.1038/nrn2357Suche in Google Scholar PubMed PubMed Central
[42] E. T. Rolls, C. McCabe and J. Redoute, Expected value, reward outcome, and temporal difference error representations in a probabilistic decision task, Cerebral Cortex 18 (2008), no. 3, 652–663. 10.1093/cercor/bhm097Suche in Google Scholar PubMed
[43] W. F. Sharpe, Capital asset prices: A theory of market equilibrium under conditions of risk, J. Finance 19 (1964), no. 3, 425–442. 10.1111/j.1540-6261.1964.tb02865.xSuche in Google Scholar
[44] D. Schunk and C. Betsch, Explaining heterogeneity in utility functions by individual differences in decision modes, J. Econom. Psychol. 27 (2006), no. 3, 386–401. 10.1016/j.joep.2005.08.003Suche in Google Scholar
[45] P. N. Tobler, J. P. O’Doherty, R. J. Dolan and W. Schultz, Reward value coding distinct from risk attitude-related uncertainty coding in human reward systems, J. Neurophysiol. 97 (2007), 1621–1632. 10.1152/jn.00745.2006Suche in Google Scholar PubMed PubMed Central
[46] S. M. Tom, C. R. Fox, C. Trepel and R. A. Poldrack, The neural basis of loss aversion in decision-making under risk, Science 315 (2007), no. 5811, 515–518. 10.1126/science.1134239Suche in Google Scholar PubMed
[47] A. van Bömmel, S. Song, P. Majer, P. N. C. Mohr, H. R. Heekeren and W. K. Härdle, Risk patterns and correlated brain activities. Multidimensional statistical analysis of fMRI data in economic decision making study, Psychometrika 79 (2014), no. 3, 489–514. 10.1007/s11336-013-9352-2Suche in Google Scholar PubMed
[48] T. Vincent, L. Risser and P. Ciuciu, Spatially adaptive mixture modeling for analysis of fMRI time series, IEEE Trans. Medical Imag. 29 (2010), no. 4, 1059–1074. 10.1109/TMI.2010.2042064Suche in Google Scholar PubMed
[49] R. Viviani, G. Gron and M. Spitzer, Functional principal component analysis of fMRI data, Human Brain Mapping 24 (2005), 109–129. 10.1002/hbm.20074Suche in Google Scholar PubMed PubMed Central
[50] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, 1953. Suche in Google Scholar
[51] E. U. Weber, The utility of measuring and modeling perceived risk, Choice, Decision, and Measurement: Essays in Honor of R. Duncan Luce, Lawrence Erlbaum Associates, Mawah (1997), 45–56. 10.4324/9781315789408-4Suche in Google Scholar
[52] E. U. Weber and E. J. Johnson, Decisions under uncertainty: Psychological, economic, and neuroeconomic explanations of risk preference, Neuroeconomics: Decision Making and the Brain, Academic Press, New York (2008), 127–144. 10.1016/B978-0-12-374176-9.00010-5Suche in Google Scholar
[53] K. J. Worsley, C. H. Liao, J. Aston, V. Petre, G. H. Duncan, F. Morales and A. C. Evans, A general statistical analysis for fMRI data, Neuroimage 15 (2002), no. 1, 1–15. 10.1006/nimg.2001.0933Suche in Google Scholar PubMed
[54] V. Zipunnikov, B. Caffo, D. M. Yousem, C. Davatzikos, B. S. Schwartz and C. Crainiceanu, Functional principal component model for high-dimensional brain imaging, NeuroImage 58 (2011), no. 3, 772–784. 10.1016/j.neuroimage.2011.05.085Suche in Google Scholar PubMed PubMed Central
© 2018 Walter de Gruyter GmbH, Berlin/Boston