Startseite Multiple Structural Breaks in Vector Error Correction Models
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Multiple Structural Breaks in Vector Error Correction Models

  • Domenic Franjic , Markus Mößler und Karsten Schweikert EMAIL logo
Veröffentlicht/Copyright: 7. August 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The analysis of structural breaks in vector error correction models is often confined to possible level shifts and trend breaks. In contrast, only rudimentary tools are available to deal with breaks in the cointegration matrix and the adjustment towards equilibrium. Particularly, the possibility of multiple structural breaks during long sampling periods is often ignored which can lead to inconsistently estimated coefficients. In this paper, we study a two-step estimator based on a penalized regression to determine the number of structural breaks, their timing, and estimate the model’s coefficients for each regime. We focus on two important cases, namely, (i) constant dynamics but changing long-run equilibria, and (ii) convergence to new long-run equilibria with new adjustment dynamics. We use simulations to investigate the finite sample performance of the two-step estimator and provide an empirical illustration using data on the term structure of interest rates.

JEL Classification: C32; C52; E43

Corresponding author: Karsten Schweikert, Core Facility Hohenheim & Institute of Economics, University of Hohenheim, Schloss Hohenheim 1 C, 70593 Stuttgart, Germany, E-mail: 

Award Identifier / Grant number: SCHW 2062/1-1

Acknowledgments

The authors would like to thank Robert Jung for helpful comments and suggestions. Funding by the German Research Foundation (Grant SCHW 2062/1-1) is gratefully acknowledged.

Appendix A: Tables

Table A1:

Estimation of (multiple) structural breaks in the VECM using the group LASSO with BEA – Case 1 (including short-run dynamics).

SB1: (τ = 0.5)
T pce τ
100 85.5 0.483 (0.068)
200 95.8 0.497 (0.043)
400 98.1 0.499 (0.024)
T b 0,1 b 1,1 α 1 α 2
100 −1.004 (0.071) −1.980 (0.097) −0.525 (0.094) 0.494 (0.094)
200 −1.006 (0.039) −1.988 (0.060) −0.511 (0.068) 0.489 (0.066)
400 −1.004 (0.028) −1.992 (0.032) −0.503 (0.054) 0.488 (0.054)
SB2: (τ1 = 0.33, τ2 = 0.67)
T pce τ 1 τ 2
150 75.5 0.323 (0.051) 0.654 (0.043)
300 84.6 0.333 (0.039) 0.660 (0.029)
600 86.3 0.335 (0.034) 0.662 (0.025)
T b 0,1 b 1,1 b 2,1 α 1 α 2
150 −1.016 (0.097) −1.964 (0.126) −1.018 (0.079) −0.526 (0.095) 0.487 (0.089)
300 −1.011 (0.049) −1.981 (0.061) −1.010 (0.047) −0.511 (0.072) 0.486 (0.070)
600 −1.007 (0.036) −1.989 (0.037) −1.008 (0.042) −0.504 (0.055) 0.486 (0.054)
SB4: (τ1 = 0.2, τ2 = 0.4, τ3 = 0.6, τ4 = 0.8)
T pce τ 1 τ 2 τ 3 τ 4
250 47.3 0.197 (0.044) 0.389 (0.051) 0.595 (0.040) 0.790 (0.032)
500 58.0 0.202 (0.031) 0.395 (0.038) 0.599 (0.032) 0.794 (0.020)
1,000 64.8 0.203 (0.029) 0.396 (0.035) 0.602 (0.024) 0.796 (0.016)
T b 0,1 b 1,1 b 2,1 b 3,1 b 4,1
250 −1.026 (0.130) −1.925 (0.210) −1.071 (0.190) −1.936 (0.178) −1.015 (0.078)
500 −1.018 (0.092) −1.955 (0.140) −1.042 (0.130) −1.965 (0.097) −1.016 (0.074)
1,000 −1.016 (0.087) −1.962 (0.134) −1.036 (0.126) −1.980 (0.064) −1.010 (0.043)
T α 1 α 2
250 −0.525 (0.100) 0.466 (0.097)
500 −0.513 (0.080) 0.473 (0.078)
1,000 −0.501 (0.072) 0.471 (0.070)
  1. Note: We use 1,000 replications of the data-generating process given in Equation (20). pce denotes the percentages of correct estimation of the number of breaks m. The variance of the error terms is σ u 2 = 1 . The first panel reports the results for one active breakpoint at τ = 0.5, the second panel considers two active breakpoints at τ1 = 0.33 and τ2 = 0.67 and the third panel has four active breakpoints at τ1 = 0.2, τ2 = 0.4, τ3 = 0.6, and τ4 = 0.8. bj,1 denotes the slope coefficient for regime j + 1 in the normalized cointegrating vector which is the only free coefficient under the imposed triangular normalization. Standard deviations are given in parentheses.

Table A2:

Estimation of (multiple) structural breaks in the VECM using the group LASSO with BEA – Case 2 (including short-run dynamics).

SB1: (τ = 0.5)
T pce τ b 0,1 b 1,1
100 84.8 0.479 (0.076) −1.023 (0.169) −1.992 (0.169)
200 93.2 0.493 (0.042) −1.011 (0.093) −1.997 (0.107)
400 96.9 0.500 (0.030) −1.003 (0.088) −1.997 (0.050)
T α 0,1 α 0,2 α 1,1 α 1,2
100 −0.493 (0.166) 0.036 (0.146) −0.006 (0.090) 0.387 (0.155)
200 −0.476 (0.123) 0.007 (0.090) −0.005 (0.056) 0.385 (0.131)
400 −0.467 (0.101) −0.008 (0.060) −0.006 (0.042) 0.393 (0.118)
SB2: (τ1 = 0.33, τ2 = 0.67)
T pce τ 1 τ 2 b 0,1 b 1,1 b 2,1
150 66.6 0.314 (0.055) 0.649 (0.050) −1.008 (0.105) −1.981 (0.278) −1.015 (0.098)
300 81.8 0.325 (0.034) 0.661 (0.028) −1.007 (0.070) −1.986 (0.094) −1.009 (0.051)
600 90.3 0.328 (0.026) 0.667 (0.016) −1.007 (0.039) −1.981 (0.058) −1.004 (0.024)
T α 0,1 α 0,2 α 1,1 α 1,2 α 2,1 α 2,2
150 −0.531 (0.163) 0.027 (0.160) −0.053 (0.108) 0.342 (0.155) −0.476 (0.154) −0.006 (0.108)
300 −0.503 (0.121) −0.004 (0.096) −0.035 (0.063) 0.343 (0.128) −0.469 (0.122) −0.009 (0.076)
600 −0.489 (0.106) −0.014 (0.060) −0.036 (0.042) 0.332 (0.119) −0.459 (0.107) −0.014 (0.052)
SB4: (τ1 = 0.2, τ2 = 0.4, τ3 = 0.6, τ4 = 0.8)
T pce τ 1 τ 2 τ 3 τ 4
250 40.2 0.199 (0.060) 0.395 (0.065) 0.587 (0.064) 0.785 (0.059)
500 58.3 0.202 (0.040) 0.396 (0.039) 0.597 (0.035) 0.792 (0.037)
1,000 61.1 0.203 (0.034) 0.398 (0.029) 0.598 (0.026) 0.796 (0.022)
T b 0,1 b 1,1 b 2,1 b 3,1 b 4,1
250 −1.033 (0.173) −1.904 (0.434) −1.091 (0.729) −1.894 (0.372) −1.042 (0.164)
500 −1.042 (0.359) −1.959 (0.206) −1.041 (0.249) −1.965 (0.179) −1.017 (0.080)
1,000 −1.026 (0.121) −1.959 (0.145) −1.051 (0.399) −1.976 (0.135) −1.013 (0.061)
T α 0,1 α 0,2 α 1,1 α 1,2 α 2,1
250 −0.517 (0.188) 0.036 (0.171) −0.073 (0.149) 0.313 (0.174) −0.404 (0.199)
500 −0.498 (0.141) −0.003 (0.095) −0.039 (0.089) 0.341 (0.136) −0.422 (0.157)
1,000 −0.473 (0.128) −0.014 (0.064) −0.034 (0.065) 0.346 (0.130) −0.407 (0.143)
T α 2,2 α 3,1 α 3,2 α 4,1 α 4,2
250 0.050 (0.167) −0.071 (0.154) 0.327 (0.170) −0.471 (0.183) 0.010 (0.130)
500 0.007 (0.098) −0.034 (0.074) 0.348 (0.141) −0.454 (0.125) −0.002 (0.079)
1,000 −0.003 (0.063) −0.026 (0.048) 0.346 (0.120) −0.445 (0.115) −0.012 (0.053)
  1. Note: We use 1,000 replications of the data-generating process given in Equation (20). The variance of the error terms is σ u 2 = 1 . pce denotes the percentages of correct estimation of the number of breaks m. The first panel reports the results for one active breakpoint at τ = 0.5, the second panel considers two active breakpoints at τ1 = 0.33 and τ2 = 0.67 and the third panel has four active breakpoints at τ1 = 0.2, τ2 = 0.4, τ3 = 0.6, and τ4 = 0.8. bj,1 denotes the slope coefficient for regime j + 1 in the normalized cointegrating vector which is the only free coefficient under the imposed triangular normalization. Similarly, αj,1 and αj,2 denote the adjustment coefficients for regime j + 1. Standard deviations are given in parentheses.

Table A3:

Estimation of (multiple) structural breaks in the VECM with N = 3 variables using the group LASSO with BEA.

Case 1:
SB1: (τ = 0.5)
T pce τ
100 93.4 0.495 (0.050)
200 97.2 0.498 (0.027)
400 98.8 0.498 (0.014)
SB2: (τ1 = 0.33, τ2 = 0.67)
T pce τ 1 τ 2
150 69.4 0.340 (0.072) 0.654 (0.044)
300 77.8 0.335 (0.039) 0.663 (0.024)
600 82.6 0.334 (0.027) 0.666 (0.015)
SB4: (τ1 = 0.2, τ2 = 0.4, τ3 = 0.6, τ4 = 0.8)
T pce τ 1 τ 2 τ 3 τ 4
250 41.4 0.257 (0.086) 0.429 (0.081) 0.609 (0.068) 0.782 (0.052)
500 46.3 0.239 (0.074) 0.420 (0.070) 0.609 (0.040) 0.791 (0.025)
1,000 51.9 0.224 (0.056) 0.408 (0.053) 0.605 (0.025) 0.794 (0.021)
Case 2:
SB1: (τ = 0.5)
T pce τ
100 86.4 0.496 (0.044)
200 94.8 0.499 (0.029)
400 96.1 0.498 (0.020)
SB2: (τ1 = 0.33, τ2 = 0.67)
T pce τ 1 τ 2
150 75.8 0.324 (0.042) 0.661 (0.031)
300 84.0 0.329 (0.031) 0.667 (0.023)
600 87.6 0.332 (0.021) 0.668 (0.011)
SB4: (τ1 = 0.2, τ2 = 0.4, τ3 = 0.6, τ4 = 0.8)
T pce τ 1 τ 2 τ 3 τ 4
250 46.8 0.212 (0.055) 0.402 (0.055) 0.593 (0.059) 0.787 (0.049)
500 51.5 0.209 (0.043) 0.396 (0.046) 0.598 (0.044) 0.791 (0.043)
1,000 62.5 0.207 (0.039) 0.399 (0.037) 0.605 (0.029) 0.795 (0.029)
  1. Note: We use 1,000 replications of the data-generating process given in Equation (20). The variance of the error terms is σ u 2 = 1 . pce denotes the percentages of correct estimation of the number of breaks m. The first panel reports the results for one active breakpoint at τ = 0.5, the second panel considers two active breakpoints at τ1 = 0.33 and τ2 = 0.67 and the third panel has four active breakpoints at τ1 = 0.2, τ2 = 0.4, τ3 = 0.6, and τ4 = 0.8. Standard deviations are given in parentheses.

References

Andrade, P., C. Bruneau, and S. Gregoir. 2005. “Testing for the Cointegration Rank when Some Cointegrating Directions are Changing.” Journal of Econometrics 124: 269–310. https://doi.org/10.1016/j.jeconom.2004.02.003.Suche in Google Scholar

Bai, J. 2000. “Vector Autoregressive Models with Structural Changes in Regression Coefficients and in Variance-Covariance Matrices.” Annals of Economics and Finance 1: 303–39.Suche in Google Scholar

Bickel, P. J., Y. Ritov, and A. B. Tsybakov. 2009. “Simultaneous Analysis of Lasso and Dantzig Selector.” Annals of Statistics 37: 1705–32. https://doi.org/10.1214/08-AOS620.Suche in Google Scholar

Bulkley, G., and P. Giordani. 2011. “Structural Breaks, Parameter Uncertainty, and Term Structure Puzzles.” Journal of Financial Economics 102: 222–32. https://doi.org/10.1016/j.jfineco.2011.05.009.Suche in Google Scholar

Campbell, J. Y., and R. J. Shiller. 1987. “Cointegration and Tests of Present Value Models.” Journal of Political Economy 95: 1062–88. https://doi.org/10.1086/261502.Suche in Google Scholar

Campbell, J. Y., and R. J. Shiller. 1991. “Yield Spreads and Interest Rate Movements: A Bird’s Eye View.” The Review of Economic Studies 58: 495–514. https://doi.org/10.2307/2298008.Suche in Google Scholar

Chan, N. H., C. Y. Yau, and R. M. Zhang. 2014. “Group LASSO for Structural Break Time Series.” Journal of the American Statistical Association 109: 590–9. https://doi.org/10.1080/01621459.2013.866566.Suche in Google Scholar

Chatterjee, A., and S. N. Lahiri. 2011. “Bootstrapping Lasso Estimators.” Journal of the American Statistical Association 106: 608–25. https://doi.org/10.1198/jasa.2011.tm10159.Suche in Google Scholar

Cho, H., and P. Fryzlewicz. 2015. “Multiple-Change-Point Detection for High Dimensional Time Series via Sparsified Binary Segmentation.” Journal of the Royal Statistical Society. Series B (Statistical Methodology) 77: 475–507. https://doi.org/10.1111/rssb.12079.Suche in Google Scholar

Clarida, R. H., L. Sarno, M. P. Taylor, and G. Valente. 2006. “The Role of Asymmetries and Regime Shifts in the Term Structure of Interest Rates.” The Journal of Business 79: 1193–224. https://doi.org/10.1086/500674.Suche in Google Scholar

Engsted, T., and C. Tanggaard. 1994. “Cointegration and the US Term Structure.” Journal of Banking & Finance 18: 167–81. https://doi.org/10.1016/0378-4266(94)00084-0.Suche in Google Scholar

Gao, W., H. Yang, and L. Yang. 2020. “Change Points Detection and Parameter Estimation for Multivariate Time Series.” Soft Computing 24: 6395–407. https://doi.org/10.1007/s00500-019-04135-8.Suche in Google Scholar

Hall, A. D., H. M. Anderson, and C. W. J. Granger. 1992. “A Cointegration Analysis of Treasury Bill Yields.” The Review of Economics and Statistics 74: 116–26. https://doi.org/10.2307/2109549.Suche in Google Scholar

Hamilton, J. D. 1988. “Rational-Expectations Econometric Analysis of Changes in Regime: An Investigation of the Term Structure of Interest Rates.” Journal of Economic Dynamics and Control 12: 385–423. https://doi.org/10.1016/0165-1889(88)90047-4.Suche in Google Scholar

Hansen, P. R. 2003. “Structural Changes in the Cointegrated Vector Autoregressive Model.” Journal of Econometrics 114: 261–95. https://doi.org/10.1016/S0304-4076(03)00085-X.Suche in Google Scholar

Hansen, H., and S. Johansen. 1999. “Some Tests for Parameter Constancy in Cointegrated VAR-Models.” Econometrics Journal 2: 306–33. https://doi.org/10.1111/1368-423X.00035.Suche in Google Scholar

Hardouvelis, G. A. 1988. “The Predictive Power of the Term Structure During Recent Monetary Regimes.” The Journal of Finance 43: 339–56. https://doi.org/10.1111/j.1540-6261.1988.tb03943.x.Suche in Google Scholar

Hardouvelis, G. A. 1994. “The Term Structure Spread and Future Changes in Long and Short Rates in the G7 Countries: Is There a Puzzle?” Journal of Monetary Economics 33: 255–83. https://doi.org/10.1016/0304-3932(94)90003-5.Suche in Google Scholar

Harris, D., S. J. Leybourne, and A. M. R. Taylor. 2016. “Tests of the Co-Integration Rank in VAR Models in the Presence of a Possible Break in Trend at an Unknown Point.” Journal of Econometrics 192: 451–67. https://doi.org/10.1016/j.jeconom.2016.02.010.Suche in Google Scholar

Hungnes, H. 2010. “Identifying Structural Breaks in Cointegrated Vector Autoregressive Models.” Oxford Bulletin of Economics and Statistics 72: 551–65. https://doi.org/10.1111/j.1468-0084.2010.00586.x.Suche in Google Scholar

Hurn, S., V. L. Martin, and D. Harris. 2013. Econometric Modelling with Time Series. New York: Cambridge University Press.Suche in Google Scholar

Hurn, S., V. L. Martin, J. Yu, and P. C. B. Phillips. 2020. Financial Econometric Modeling. New York: Oxford University Press.Suche in Google Scholar

Inoue, A. 1999. “Tests of Cointegrating Rank with a Trend-Break.” Journal of Econometrics 90: 215–37. https://doi.org/10.1016/S0304-4076(98)00042-6.Suche in Google Scholar

Johansen, S. 1988. “Statistical Analysis of Cointegration Vectors.” Journal of Economic Dynamics and Control 12: 231–54. https://doi.org/10.1016/0165-1889(88)90041-3.Suche in Google Scholar

Johansen, S. 1991. “Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models.” Econometrica 59: 1551–80. https://doi.org/10.2307/2938278.Suche in Google Scholar

Johansen, S., R. Mosconi, and B. Nielsen. 2000. “Cointegration Analysis in the Presence of Structural Breaks in the Deterministic Trend.” Econometrics Journal 3: 216–49. https://doi.org/10.1111/1368-423X.00047.Suche in Google Scholar

Kim, D. H., and J. H. Wright. 2005. “An Arbitrage-Free Three-Factor Term Structure Model and the Recent Behavior of Long-Term Yields and Distant-Horizon Forward Rates.” Finance and Economics Discussion Series – Federal Reserve Board: 1–21. https://doi.org/10.17016/feds.2005.33.Suche in Google Scholar

Kirch, C., B. Muhsal, and H. Ombao. 2015. “Detection of Changes in Multivariate Time Series With Application to EEG Data.” Journal of the American Statistical Association 110: 1197–216. https://doi.org/10.1080/01621459.2014.957545.Suche in Google Scholar

Kishor, N. K., and H. A. Marfatia. 2013. “Does Federal Funds Futures Rate Contain Information About the Treasury Bill Rate?” Applied Financial Economics 23: 1311–24. https://doi.org/10.1080/09603107.2013.808397.Suche in Google Scholar

Kuchibhotla, A. K., J. E. Kolassa, and T. A. Kuffner. 2022. “Post-Selection Inference.” Annual Review of Statistics and Its Application 9: 505–27. https://doi.org/10.1146/annurev-statistics-100421-044639.Suche in Google Scholar

Lanne, M. 1999. “Near Unit Roots and the Predictive Power of Yield Spreads for Changes in Long-Term Interest Rates.” The Review of Economics and Statistics 81: 393–8. https://doi.org/10.1162/003465399558328.Suche in Google Scholar

Li, Y., and P. Perron. 2017. “Inference on Locally Ordered Breaks in Multiple Regressions.” Econometric Reviews 36: 289–353. https://doi.org/10.1080/07474938.2015.1114552.Suche in Google Scholar

Lütkepohl, H., P. Saikkonen, and C. Trenkler. 2003. “Comparison of Tests for the Cointegrating Rank of a VAR Process with a Structural Shift.” Journal of Econometrics 113: 201–29. https://doi.org/10.1016/S0304-4076(02)00200-2.Suche in Google Scholar

Lütkepohl, H., P. Saikkonen, and C. Trenkler. 2004. “Testing for the Cointegration Rank of a VAR Process with Level Shift at Unknown Time.” Econometrica 72: 647–62. https://doi.org/10.1111/j.1468-0262.2004.00505.x.Suche in Google Scholar

Meinshausen, N., and P. Bühlmann. 2006. “High-Dimensional Graphs and Variable Selection with the Lasso.” Annals of Statistics 34: 1436–62. https://doi.org/10.1214/009053606000000281.Suche in Google Scholar

Oka, T., and P. Perron. 2018. “Testing for Common Breaks in a Multiple Equations System.” Journal of Econometrics 204: 66–85. https://doi.org/10.1016/j.jeconom.2018.01.003.Suche in Google Scholar

Phillips, P. C. B. 1991. “Optimal Inference in Cointegrated Systems.” Econometrica 59: 283–306. https://doi.org/10.2307/2938258.Suche in Google Scholar

Phillips, P. C. B. 1995. “Fully Modified Least Squares and Vector Autoregression.” Econometrica 63: 1023–78. https://doi.org/10.2307/2171721.Suche in Google Scholar

Qu, Z. 2007. “Searching for Cointegration in a Dynamic System.” Econometrics Journal 10: 580–604. https://doi.org/10.1111/j.1368-423X.2007.00223.x.Suche in Google Scholar

Quintos, C. E. 1997. “Stability Tests in Error Correction Models.” Journal of Econometrics 82: 289–315. https://doi.org/10.1016/S0304-4076(97)00059-6.Suche in Google Scholar

Roberds, W., D. Runkle, and C. H. Whiteman. 1996. “A Daily View of Yield Spreads and Short-Term Interest Rate Movements.” Journal of Money, Credit and Banking 28: 34–53. https://doi.org/10.2307/2077965.Suche in Google Scholar

Safikhani, A., and A. Shojaie. 2022. “Joint Structural Break Detection and Parameter Estimation in High-Dimensional Nonstationary VAR Models.” Journal of the American Statistical Association 117: 251–64. https://doi.org/10.1080/01621459.2020.1770097.Suche in Google Scholar PubMed PubMed Central

Saikkonen, P., and H. Lütkepohl. 2000a. “Testing for the Cointegrating Rank of a VAR Process with Structural Shifts.” Journal of Business & Economic Statistics 18: 451–64. https://doi.org/10.2307/3533229.Suche in Google Scholar

Saikkonen, P., and H. Lütkepohl. 2000b. “Trend Adjustment Prior to Testing for the Cointegrating Rank of a Vector Autoregressive Process.” Journal of Time Series Analysis 21: 435–56. https://doi.org/10.1111/1467-9892.00192.Suche in Google Scholar

Saikkonen, P., H. Lütkepohl, and C. Trenkler. 2006. “Break Date Estimation for VAR Processes with Level Shift with an Application to Cointegration Testing.” Econometric Theory 22: 15–68. https://doi.org/10.1017/S0266466606060026.Suche in Google Scholar

Sarno, L., D. L. Thornton, and G. Valente. 2007. “The Empirical Failure of the Expectations Hypothesis of the Term Structure of Bond Yields.” Journal of Financial and Quantitative Analysis 42: 81–100. https://doi.org/10.1017/s0022109000002192.Suche in Google Scholar

Schweikert, K. 2022. “Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions.” Journal of Time Series Analysis 43: 83–104. https://doi.org/10.1111/jtsa.12593.Suche in Google Scholar

Schweikert, K. 2025. “Detecting Multiple Structural Breaks in Systems of Linear Regression Equations with Integrated and Stationary Regressors.” Oxford Bulletin of Economics and Statistics: 1–16doi. https://doi.org/10.1111/obes.12666.Suche in Google Scholar

Seo, B. 1998. “Tests for Structural Change in Cointegrated Systems.” Econometric Theory 14: 222–59. https://doi.org/10.1017/S0266466698142044.Suche in Google Scholar

Thornton, D. L. 2018. “Greenspan’s Conundrum and the Fed’s Ability to Affect Long-Term Yields.” Journal of Money, Credit and Banking 50: 513–43. https://doi.org/10.1111/jmcb.12469.Suche in Google Scholar

Tillmann, P. 2007. “Inflation Regimes in the US Term Structure of Interest Rates.” Economic Modelling 24: 203–23. https://doi.org/10.1016/j.econmod.2006.07.001.Suche in Google Scholar

Trenkler, C., P. Saikkonen, and H. Lütkepohl. 2007. “Testing for the Cointegrating Rank of a VAR Process with Level Shift and Trend Break.” Journal of Time Series Analysis 29: 331–58. https://doi.org/10.1111/j.1467-9892.2007.00558.x.Suche in Google Scholar

Tzavalis, E., and M. R. Wickens. 1997. “Explaining the Failures of the Term Spread Models of the Rational Expectations Hypothesis of the Term Structure.” Journal of Money, Credit and Banking 29: 364–80. https://doi.org/10.2307/2953700.Suche in Google Scholar

Weber, E., and J. Wolters. 2012. “The US Term Structure and Central Bank Policy.” Applied Economics Letters 19: 41–5. https://doi.org/10.1080/13504851.2011.566171.Suche in Google Scholar

Weber, E., and J. Wolters. 2013. “Risk and Policy Shocks on the US Term Structure.” Scottish Journal of Political Economy 60: 101–19. https://doi.org/10.1111/sjpe.12004.Suche in Google Scholar

Yuan, M., and Y. Lin. 2006. “Model Selection and Estimation in Regression with Grouped Variables.” Journal of the Royal Statistical Society - Series B: Statistical Methodology 68: 49–67. https://doi.org/10.1111/j.1467-9868.2005.00532.x.Suche in Google Scholar

Zhao, P., and B. Yu. 2006. “On Model Selection Consistency of Lasso.” Journal of Machine Learning Research 7: 2541–63. https://doi.org/10.1109/TIT.2006.883611.Suche in Google Scholar

Zhao, S., D. Witten, and A. Shojaie. 2021. “In Defense of the Indefensible: A Very Naïve Approach to High-Dimensional Inference.” Statistical Science 36: 562–77. https://doi.org/10.1214/20-STS815.Suche in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/snde-2025-0009).


Received: 2025-01-31
Accepted: 2025-07-22
Published Online: 2025-08-07

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/snde-2025-0009/html
Button zum nach oben scrollen