Startseite Construction of leading economic index for recession prediction using vine copulas
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Construction of leading economic index for recession prediction using vine copulas

  • Kajal Lahiri und Liu Yang EMAIL logo
Veröffentlicht/Copyright: 27. August 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper constructs a composite leading index for business cycle prediction based on vine copulas that capture the complex pattern of dependence among individual predictors. This approach is optimal in the sense that the resulting index possesses the highest discriminatory power as measured by the receiver operating characteristic (ROC) curve. The model specification is semi-parametric in nature, suggesting a two-step estimation procedure, with the second-step finite dimensional parameter being estimated by QMLE given the first-step non-parametric estimate. To illustrate its usefulness, we apply this methodology to optimally aggregate the 10 leading indicators selected by The Conference Board (TCB) to predict economic recessions in the United States. In terms of the discriminatory power, our method is significantly better than the Index used by TCB.

JEL Codes: C14; C15; C32; C43; C51; C53; C37

Corresponding author: Liu Yang, School of Economics, Nanjing University, Nanjing, Jiangsu 210093, PR China. Tel.: +86 18710075220, E-mail:

Article note: We thank the participants of the 27th Annual Symposium of the Society for Nonlinear Dynamics and Econometrics in Dallas, March 2019, for many helpful comments and suggestions. Any remaining errors are solely ours.


Funding source: National Science Foundation of China

Award Identifier / Grant number: 71603115

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by the National Science Foundation of China (grant number 71603115).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Aas, K., C. Czado, A. Frigessi, and H. Bakken. 2009. “Pair-Copula Constructions of Multiple Dependence.” Insurance: Mathematics and Economics 44: 182–198, https://doi.org/10.1016/j.insmatheco.2007.02.001.Suche in Google Scholar

Acar, E. F., R. V. Craiu, and F. Yao. 2011. “Dependence Calibration in Conditional Copulas: A Nonparametric Approach.” Biometrics 67: 445–453, https://doi.org/10.1111/j.1541-0420.2010.01472.x.Suche in Google Scholar PubMed

Acar, E. F., C. Genest, and J. Nešlehová. 2012. “Beyond Simplified Pair-Copula Constructions.” Journal of Multivariate Analysis 110: 74–90, https://doi.org/10.1016/j.jmva.2012.02.001.Suche in Google Scholar

Anatolyev, S. 2009. “Multi-Market Direction-Of-Change Modeling Using Dependence Ratios.” Studies in Nonlinear Dynamics & Econometrics 13, https://doi.org/10.2202/1558-3708.1532. Article 5.Suche in Google Scholar

Bedford, T., and R. M. Cooke. 2001. “Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines.” Annals of Mathematics and Artificial Intelligence 32: 245–268, https://doi.org/10.1023/a:1016725902970.10.1023/A:1016725902970Suche in Google Scholar

Bedford, T., and R. M. Cooke. 2002. “Vines—A New Graphical Model for Dependent Random Variables.” Annals of Statistics 30: 1031–1068, https://doi.org/10.1214/aos/1031689016.Suche in Google Scholar

Berg, D., and K. Aas. 2009. “Models for Construction of Higher-Dimensional Dependence: A Comparison Study.” The European Journal of Finance 15: 639–659. https://doi.org/10.1080/13518470802697428.Suche in Google Scholar

Berge, T. J., and Ò. Jordà. 2011. “Evaluating the Classification of Economic Activity into Recessions and Expansions.” American Economic Journal: Macroeconomics 3: 246–277, https://doi.org/10.1257/mac.3.2.246.Suche in Google Scholar

Brechmann, E. C., and C. Czado. 2013. “Risk Management with High-Dimensional Vine Copulas: An Analysis of the Euro Stoxx 50.” Statistics & Risk Modeling 30: 307–342, https://doi.org/10.1524/strm.2013.2002.Suche in Google Scholar

Brechmann, E. C., and U. Schepsmeier. 2013. “Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine.” Journal of Statistical Software 52: 1–27, https://doi.org/10.18637/jss.v052.i03.Suche in Google Scholar

Brown, B. M., and Y. G. Wang. 2005. “Standard Errors and Covariance Matrices for Smoothed Rank Estimators.” Biometrika 92: 149–158, https://doi.org/10.1093/biomet/92.1.149.Suche in Google Scholar

Burns, A. F., and W. C. Mitchell. 1946. Measuring Business Cycles. New York: National Bureau of Economic Research.Suche in Google Scholar

Chen, X., and Y. Fan. 2006. “Estimation and Model Selection of Semiparametric Copula-Based Multivariate Dynamic Models under Copula Misspecification.” Journal of Econometrics 135: 125–154, https://doi.org/10.1016/j.jeconom.2005.07.027.Suche in Google Scholar

Chen, X., and Y. Fan. 2007. “A Model Selection Test for Bivariate Failure-Time Data.” Econometric Theory 23: 414–439, https://doi.org/10.1017/s0266466607070181.Suche in Google Scholar

Czado, C. 2010. “Pair-Copula Constructions of Multivariate Copulas.” In Copula Theory and its Applications, edited by P. Jaworski, F. Durante, W. K. Härdle and T. Rychlik. New York: Springer.10.1007/978-3-642-12465-5_4Suche in Google Scholar

Demarta, S., and A. J. McNeil. 2005. “The T Copula and Related Copulas.” International Statistical Review 73: 111–129.10.1111/j.1751-5823.2005.tb00254.xSuche in Google Scholar

Dissmann, J., E. C. Brechmann, C. Czado, and D. Kurowicka. 2013. “Selecting and Estimating Regular Vine Copulae and Application to Financial Returns.” Computational Statistics & Data Analysis 59: 52–69.10.1016/j.csda.2012.08.010Suche in Google Scholar

Drehmann, M., and M. Juselius. 2014. “Evaluating Early Warning Indicators of Banking Crises: Satisfying Policy Requirements.” International Journal of Forecasting 30: 759–780, https://doi.org/10.1016/j.ijforecast.2013.10.002.Suche in Google Scholar

Fawcett, T. 2006. “An Introduction to ROC Analysis.” Pattern Recognition Letters 27: 861–874, https://doi.org/10.1016/j.patrec.2005.10.010.Suche in Google Scholar

Fermanian, J. 2005. “Goodness-of-Fit Tests for Copulas.” Journal of Multivariate Analysis 95: 119–152, https://doi.org/10.1016/j.jmva.2004.07.004.Suche in Google Scholar

Genest, C., B. Rémillard, and D. Beaudoin. 2009. “Goodness-Of-Fit Tests for Copulas: A Review and a Power Study.” Insurance: Mathematics and Economics 44: 199–213, https://doi.org/10.1016/j.insmatheco.2007.10.005.Suche in Google Scholar

Han, A. K. 1987. “Non-parametric Analysis of a Generalized Regression Model.” Journal of Econometrics 35: 303–316, https://doi.org/10.1016/0304-4076(87)90030-3.Suche in Google Scholar

Harding, D., and A. Pagan. 2011. “An Econometric Analysis of Some Models for Constructed Binary Time Series.” Journal of Business & Economic Statistics 29: 86–95, https://doi.org/10.1198/jbes.2009.08005.Suche in Google Scholar

Hastie, T., R. Tibshirani, and J. Friedman. 2001. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer.10.1007/978-0-387-21606-5Suche in Google Scholar

Jafarzadeh, S. R., W. O. Johnson, and I. A. Gardner. 2016. “Bayesian Modeling and Inference for Diagnostic Accuracy and Probability of Disease Based on Multiple Diagnostic Biomarkers with and without a Perfect Reference Standard.” Statistics in Medicine 35: 859–876, https://doi.org/10.1002/sim.6745.Suche in Google Scholar

Joe, H. 1996. “Families of m-variate Distributions with Given Margins and m(m−1)/2 Bivariate Dependence Parameters.” In Distributions with Fixed Marginals and Related Topics, edited by L. Rüschendorf, B. Schweizer, and M. D. Taylor. Hayward, CA: Institute of Mathematical Statistics.10.1214/lnms/1215452614Suche in Google Scholar

Joe, H. 1997. Multivariate Models and Dependence Concepts. London: Chapman & Hall.10.1201/9780367803896Suche in Google Scholar

Jordà, Ò., and A. M. Taylor. 2012. “The Carry Trade and Fundamentals: Nothing to Fear but FEER Itself.” Journal of International Economics 88: 74–90, https://doi.org/10.1016/j.jinteco.2012.03.001.Suche in Google Scholar

Klugman, S. A., and R. Parsa. 1999. “Fitting Bivariate Loss Distributions with Copulas.” Insurance: Mathematics and Economics 24: 139–148, https://doi.org/10.1016/s0167-6687(98)00039-0.Suche in Google Scholar

Kurowicka, D., and R. M. Cooke. 2004. “Distribution-Free Continuous Bayesian Belief Nets.” In Fourth International Conference on Mathematical Methodsin Reliability Methodology and Practice. Santa Fe, New Mexico.10.1142/9789812703378_0022Suche in Google Scholar

Kurowicka, D., and H. Joe. 2011. Dependence Modeling—Handbook on Vine Copulae. Singapore: World Scientiïc Publishing Co.10.1142/7699Suche in Google Scholar

Lahiri, K., and J. G. Wang. 2013. “Evaluating Probability Forecasts for GDP Declines Using Alternative Methodologies.” International Journal of Forecasting 29: 175–190, https://doi.org/10.1016/j.ijforecast.2012.07.004.Suche in Google Scholar

Lahiri, K., and L. Yang. 2013. “Forecasting Binary Outcomes.” In Handbook of Economic Forecasting, Vol. 2B, edited by A. Timmermann, and G. Elliott, 1025–1106. North-Holland, Amsterdam: Elsevier.10.1016/B978-0-444-62731-5.00019-1Suche in Google Scholar

Lahiri, K., and L. Yang. 2015. “A Nonlinear Forecast Combination Procedure for Binary Outcomes.” Studies in Nonlinear Dynamics and Econometrics 29: 175–190.Suche in Google Scholar

Lahiri, K., and L. Yang. 2018. “Confidence Bands for ROC Curves with Serially Dependent Data.” Journal of Business & Economic Statistics 36: 115–130, https://doi.org/10.1080/07350015.2015.1073593.Suche in Google Scholar

Lahiri, S. N. 2003. Resampling Methods for Dependent Data. New York: Springer.10.1007/978-1-4757-3803-2Suche in Google Scholar

Levanon, G., J. Manini, A. Ozyildirim, B. Schaitkin, and J. Tanchua. 2015. “Using Financial Indicators to Predict Turning Points in the Business Cycle: The Case of the Leading Economic Index for the United States.” International Journal of Forecasting 31: 426–445, https://doi.org/10.1016/j.ijforecast.2014.11.004.Suche in Google Scholar

Li, Q., and J. S. Racine. 2008. Nonparametric Econometrics: Theory and Practice. Princeton: Princeton University Press.Suche in Google Scholar

Lin, H., L. Zhou, H. Peng, and X. Zhou. 2011. “Selection and Combination of Biomarkers Using ROC Method for Disease Classification and Prediction.” Canadian Journal of Statistics 39: 324–343, https://doi.org/10.1002/cjs.10107.Suche in Google Scholar

Liu, W., and E. Moench. 2016. “What Predicts U.S. Recessions?” International Journal of Forecasting 32: 1138–1150, https://doi.org/10.1016/j.ijforecast.2016.02.007.Suche in Google Scholar

McIntosh, M. W., and M. S. Pepe. 2002. “Combining Several Screening Tests: Optimality of the Risk Score.” Biometrics 58: 657–664, https://doi.org/10.1111/j.0006-341x.2002.00657.x.Suche in Google Scholar PubMed

Min, A., and C. Czado. 2010. “Bayesian Inference for Multivariate Copulas Using Pair-Copula Constructions.” Journal of Financial Econometrics 8: 511–46, https://doi.org/10.1093/jjfinec/nbp031.Suche in Google Scholar

Nelsen, R. B. 2006. An Introduction to Copulas. New York: Springer.Suche in Google Scholar

Patton, A. J., and Y. Fan. 2014. “Copulas in Econometrics.” Annual Review of Economics 6: 179–200.10.1146/annurev-economics-080213-041221Suche in Google Scholar

Patton, A. J. 2006. “Modelling Asymmetric Exchange Rate Dependence.” International Economic Review 47: 527–556, https://doi.org/10.1111/j.1468-2354.2006.00387.x.Suche in Google Scholar

Patton, A. J. 2012. “A Review of Copula Models for Economic Time Series.” Journal of Multivariate Analysis 110: 4–18, https://doi.org/10.1016/j.jmva.2012.02.021.Suche in Google Scholar

Patton, A. J. 2013. “Copula Methods for Forecasting Multivariate Time Series.” In Handbook of Economic Forecasting, Vol. 2B, edited by A. Timmermann, and G. Elliott, 899–960. North-Holland Amsterdam: Elsevier.10.1016/B978-0-444-62731-5.00016-6Suche in Google Scholar

Pepe, M. S., T. Cai, and G. Longton. 2006. “Combining Predictors for Classification Using the Area under the Receiver Operating Characteristic Curve.” Biometrics 62: 221–229, https://doi.org/10.1111/j.1541-0420.2005.00420.x.Suche in Google Scholar PubMed

Pepe, M. S. 2000. “Receiver Operating Characteristic Methodology.” Journal of the American Statistical Association 95: 308–311, https://doi.org/10.1080/01621459.2000.10473930.Suche in Google Scholar

Rudebusch, G. D., and J. C. Williams. 2009. “Forecasting Recessions: The Puzzle of the Enduring Power of the Yield Curve.” Journal of Business & Economic Statistics 27: 492–503, https://doi.org/10.1198/jbes.2009.07213.Suche in Google Scholar

Schepsmeier, U. 2016. “A Goodness-of-Fit Test for Regular Vine Copula Models.” Econometric Reviews 35: 1–22.10.1080/07474938.2016.1222231Suche in Google Scholar

Schisterman, E. F., N. J. Perkins, A. Liu, and H. Bondell. 2005. “Optimal Cut-Point and its Corresponding Youden Index to Discriminate Individuals Using Pooled Blood Samples.” Epidemiology 16: 73–81, https://doi.org/10.1097/01.ede.0000147512.81966.ba.Suche in Google Scholar PubMed

Scotti, C. 2011. “A Bivariate Model of Federal Reserve and ECB Main Policy Rates.” International Journal of Central Banking 7: 37–78.Suche in Google Scholar

Sklar, A. 1973. “Random Variables, Joint Distributions, and Copulas.” Kybernetica 9: 449–460.Suche in Google Scholar

Swets, J. A., R. M. Dawes, and J. Monahan. 2000. “Better Decisions through Science.” Scientific American 283: 82–87, https://doi.org/10.1038/scientificamerican1000-82.Suche in Google Scholar PubMed

Trivedi, P. K., and D. M. Zimmer. 2005. “Copula Modeling: An Introduction for Practitioners.” Foundations and Trends in Econometrics 1: 1–111, https://doi.org/10.1561/0800000005.10.1561/0800000005Suche in Google Scholar

Youden, W. J. 1950. “Index for Rating Diagnostic Tests.” Cancer 3: 32–35, https://doi.org/10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3.10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3Suche in Google Scholar

Zhou, X. H., N. A. Obuchowski, and D. K. McClish. 2002. Statistical Methods in Diagnostic Medicine. New Jersey: John Wiley & Sons.10.1002/9780470317082Suche in Google Scholar

Zimmer, D. M. 2015. “Analyzing Comovements in Housing Prices Using Vine Copulas.” Economic Inquiry 53: 1156–1169, https://doi.org/10.1111/ecin.12156.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material https://doi.org/10.1515/snde-2019-0033.


Received: 2019-03-31
Accepted: 2020-06-02
Published Online: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/snde-2019-0033/pdf
Button zum nach oben scrollen