Startseite Semi-global solutions to DSGE models: perturbation around a deterministic path
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Semi-global solutions to DSGE models: perturbation around a deterministic path

  • Viktors Ajevskis EMAIL logo
Veröffentlicht/Copyright: 12. April 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study proposes an approach based on a perturbation technique to construct global solutions to dynamic stochastic general equilibrium models (DSGE). The main idea is to expand a solution in a series of powers of a small parameter scaling the uncertainty in the economy around a solution to the deterministic model, i.e. the model where the volatility of the shocks vanishes. If a deterministic path is global in state variables, then so are the constructed solutions to the stochastic model, whereas these solutions are local in the scaling parameter. Under the assumption that a deterministic path is already known the higher order terms in the expansion are obtained recursively by solving linear rational expectations models with time-varying parameters. The present work also proposes a method rested on backward recursion for solving general systems of linear rational expectations models with time-varying parameters and determines the conditions under which the solutions of the method exist.

Appendix

A Proofs for Section 5

Proof of proposition 5.1: The proof is by induction on i. Suppose that i=0. For the time T from (52) we have

ETuT+1=BTuT+Q21,TsT+Ψ2,TETηT+1.

As BT is invertible, we have

uT,T=KT,TsTgT,0+LT,T1ETuT+1,

where KT,T=BT1Q21,T;gT,0=BT1Ψ2,TETηT+1 and LT,T1=BT1. From (53), (54) and (56) it follows that the inductive assumption is proved for i=0. Assuming that (55) holds for i>0, we will prove it for i+1. To this end, consider Equation (52) for the time t=Ti−1. As the matrix BTi is invertible, we obtain

uT,Ti1=BTi11Q21,Ti1sTi1BTi11Ψ2,Ti1ETi1ηTi+BTi11ETi1uT,Ti.

Substituting the induction assumption (55) for uT,Ti yields

uT,Ti1=BTi11Q21,Ti1sTi1BTi11Ψ2,Ti1ETi1ηTi+BTi11ETi1[KT,TisTi+gT,i+(k=1i+1LT,Ti+k1)ETi(uT+1)].

Substituting (51) for ETi−1(sTi ) and using the law of iterated expectations gives

uT,Ti1=BTi1Q21,TisTi1BTi1Ψ2,TiETi1ηTi+BTi1gT,i+BTi1(k=1i+1LT,Ti+k1)ETi1(uT+1)+BTi1[KT,Ti(ATisTi1+Q12,TiuT,Ti1+Ψ1,TiETi1ηTi)].

Collecting the terms with uT,Ti−1, sTi−1 and ηTi , we get

(I+BTi1KT,TiQ12,Ti)uT,Ti1=BTi1[(Q21,Ti+KT,TiATi)sTi1+(Ψ2,Ti+KT,TiΨ1,Ti)ETi1ηTi+gT,i+(k=1i+1LT,Ti+k1)ETi1(uT+1)]

Suppose for the moment that the matrix

ZT,Ti=I+BTi1KT,TiQ12,Ti

is invertible. Pre-multiplying the last equation by ZT,Ti1, we obtain

uT,Ti1=ZT,Ti1BTi1[(Q21,Ti+KT,TiATi)sTi1+(Ψ2,Ti+KT,TiΨ1,Ti)ETi1ηTi+gT,i+(k=1i+1LT,Ti+k1)ETi1(uT+1)].

Note that LT,Ti =BTiZT,Ti ; then using the definition of KT,Ti−1 (53), we see that

(91)uT,Ti1=KT,Ti1sTi1LT,Ti1(Ψ2,Ti+KT,TiΨ1,Ti)ETi1ηTi+LT,Ti1gT,i+LT,Ti1(k=1i+1LT,Ti+k1)ETi1(uT+1).

Using the definition of gT,i and LTi,Ti+j [(54) and (56)], we deduce that

(92)gT,i+1=LT,Ti1(Ψ2,Ti+KT,TiΨ1,Ti)ETi1ηTi+LT,Ti1gT,i.

From (91) and (92) it follows that

uT,Ti1=KT,Ti1sTi1+gT,i+1+(k=1i+2LT,Ti1+k1)ETi1(uT+1).

Proof of proposition 5.2: We begin by rewriting (53) as

(BTi+KT,TiQ12,Ti)KT,T(i+1)=(Q21,Ti+KT,TiATi).

Rearranging terms, we have

(93)KT,T(i+1)=BTi1(Q21,Ti+KT,TiATi)BTi1KT,TiQ12,TiKT,T(i+1).

Taking the norms and using the norm properties gives

KT,T(i+1)BTi1Q21,Ti+BTi1KT,TiATi+BTi1KT,TiQ12,TiKT,T(i+1).

Rearranging terms, we get

(94)KT,T(i+1)BTi1Q21,Ti+BTi1KT,TiATi1BTi1KT,TiQ12,Ti.

Inequality (94) is a difference inequality with respect to ||KT,Ti ||, i=0, 1, …, T, and with the time-varying coefficients ||ATi ||, BTi1, ||Q12,Ti || and ||Q21,Ti ||. In (94) we assume that

1BTi1KT,TiQ12,Ti0.

This is obviously true if ||KT,Ti ||=0. We shall show that if the initial condition ||KT,T+i ||=0, then (1BTi1KT,TiQ12,Ti)>0,i=1, 2, …, T. Indeed, consider the difference equation:

(95)si+1=bd+basi(1bcsi).

Lemma A.1If inequality (57) holds, then the difference equation (95) has two fixed points

(96)s1=2bd1ba+(1ba)24b2cd,s2=1ba+(1ba)24b2cd2bc,

wheres1is a stable fixed point whereass2is an unstable one. Moreover, under the initial conditions0=0 the solutionsi , i=1, 2, …, is an increasing sequence and converges tos1.

The lemma can be proved by direct calculation. From (48)–(47) the values a, b, c and d majorize ||ATi ||, BTi1, ||Q12,Ti || and ||Q21,Ti ||, respectively. If we consider Equation (92) and inequality (95) as initial value problems with the initial conditions ||KT,T+1||=0 and s0=0, then their solutions obviously satisfy the inequality ||KT,Ti ||≤si+1, i=1, 2, …, T. In other words, ||KT,Ti || is majorized by si . From the last inequality and Lemma A.1 it may be concluded that

(97)KT,Tis1,i=0,1,2,,T,T.

From (96), (97) and (48) it follows that

(98)BTi1KT,TiQ12,Ti2b2dc1ba+(1ba)24b2cd.

From (57) we see that 2b2dc<(1−ab)2/2. Substituting this inequality into (98) gives

(99)BTi1KT,TiQ12,Ti(1ba)22(1ba+(1ba)24b2cd)<(1ba)22(1ba)=1ba2<1,

where the last inequality follows from (50).□

Proof of proposition 5.4: The assertion of the proposition is true if there exist constants M and r such that 0<r<1 and for T∈ℕ

(100)KT,jKT+1,jMrT+1,j=0,1,2,.

Note now that KT,j (KT+1,j ) is a solution to the matrix difference equation (53) at i=Tj (i=T+1−j) with the initial condition KT,T+1=0 (KT+1,T+2=0). Subtracting (93) for KT,T−(i+1) from that for KT+1,T−(i+1), we have

KT,T(i+1)KT+1,T(i+1)=BTi1(KT,Ti)KT+1,Ti)ATiBTi1KT,Ti)Q12,TiKT,T(i+1)+BTi1KT+1,TiQ12,TiKT+1,T(i+1).

Adding and subtracting BTi1KT,TiQ12,TiKT+1,T(i+1) in the right hand side gives

KT,T(i+1)KT+1,T(i+1)=BTi1(KT,Ti)KT+1,Ti)ATiBTi1KT,TiQ12,Ti(KT,T(i+1)KT+1,T(i+1))BTi1(KT,TiKT+1,Ti)Q12,TiKT+1,T(i+1).

Rearranging terms yields

(I+BTi1KT,TiQ12,Ti)(KT,T(i+1)KT+1,T(i+1))=BTi1(KT,TiKT+1,Ti)ATiBTi1(KT,TiKT+1,Ti)Q12,TiKT+1,T(i+1).

From Proposition 5.3 it follows that the matrix

ZT,Ti=(I+BTi1KT,TiQ12,Ti)

is invertible, then pre-multiplying the last equation by this matrix yields

KT,T(i+1)KT+1,T(i+1)=ZT,Ti1(BTi1(KT,TiKT+1,Ti)ATiBTi1(KT,Ti)KT+1,Ti)Q12,TiKT+1,T(i+1)).

Taking the norms, using the norm property and the triangle inequality, we get

(101)KT,T(i+1)KT+1,T(i+1)ZT,Ti1(BTi1KT,TiKT+1,TiATi+BTi1KT,TiKT+1,TiQ12,TiKT+1,T(i+1)).

From (47) and (99) we have

(102)KT,T(i+1)KT+1,T(i+1)(ab+1ba2)ZT,Ti1KT,TiKT+1,Ti=1+ba2ZT,Ti1KT,TiKT+1,Ti.

From the norm property and Golub and Loan (1996, Lemma 2.3.3) we get the estimate

ZT,Ti1=(I+BTi1KT,TiQ12,Ti)111BTi1KT,TiQ12,Ti11BTi1KT,TiQ12,Ti

By (99), we have

ZT,Ti1111ba2=21+ba

Substituting the last inequality into (102) gives

(103)KT,T(i+1)KT+1,T(i+1)KT,TiKT+1,Ti.

Using (103) successively for i=−1, 0, 1, …, T−1, and taking into account KT,T+1=0 and KT+1,T+1=BT+21Q21,T+2 results in

(104)KT,jKT+1,j<KT,T+1KT+1,T+1=BT+21Q21,T+2BT+21Q21,T+2bQ21,T+2,j=0,1,2,.

Recall that Q21, T depends on the solution to the deterministic problem (10), i.e.

Q21,T=Q21(xT+1(0),xT(0),zT+1(0),zT(0)).

From Hartmann (1982, Corollary 5.1) and differentiability of Q21 with respect to the state variables it follows that

(105)Q21,TC(α+θ)T,

where α is the largest eigenvalue modulus of the matrix A from (40), C is some constant and θ is arbitrary small positive number. In fact, α+θ determines the speed of convergence for the deterministic solution to the steady state. Inserting (105) into (104), we can conclude

KT,jKT+1,j<bC(α+θ)T+2,j=0,1,2,

Denoting M=bC(α+θ) and r=α+θ we finally obtain (100).□

B The first order system

For n=1 we have

[s0(1)u0(1)]=Z1Z1[x0(1)y0(1)]=0,

From (43) for the time T we have

uT(1)=BT+11Q21,T+1sT(1)BT+11Π2,t+1zT(1)+BT+11ETuT+1(1).

Denoting KT,T=BT+11Q21,T+1 and RT=BT+11Π2,t+1 gives

(106)uT(1)=KT,TsT(1)RTzT(1)+BT+11ETuT+1(1).

For T−1 we have

(107)uT1(1)=BT1Q21,TsT1(1)BT1Π2,tzT1(1)+BT1ET1uT(1).

Taking conditional expectations at the time T−1 from both side (106) and inserting (2) we get

(108)ET1uT(1)=KT,TET1sT(1)RTΛzT1(1)+BT+11ET1uT+1(1).

Inserting (108) into (107) gives

(109)uT1(1)=BT1Q21,TsT1(1)BT1Π2,tzT1(1)+BT1ET1(KT,TET1sTRTΛzT1(1)+BT+11ETuT+1(1)).

Inserting now ET−1sT into (109) from (42) yields

uT1(1)=BT1Q21,TsT1(1)BT1Π2,tzT1(1)+BT1ET1[KT,T(AT1sT1(1)+Q12,TuT1(1)+Π1,TzT1(1))RTΛzT1(1)+BT+11ETuT+1(1)].

Reshuffling terms, we have

(110)(I+BT1KT,TQ12,T)uT1(1)=BT1(Q21,T+BT1KT,TAT1)sT1(1)BT1(Π2,t+KT,TΠ1,T+RTΛ)zT1(1)+BT1BT+11ETuT+1(1).

Multiplying (110) by (I+BT1KT,TQ12,T)1 yields

uT1(1)=(I+BT1KT,TQ12,T)1BT1(Q21,T+BT1KT,TAT1)sT1(1)(I+BT1KT,TQ12,T)1BT1(Π2,t+KT,TΠ1,T+RTΛ)zT1(1)+(I+BT1KT,TQ12,T)1BT1BT+11ETuT+1(1).

or

uT1(1)=(BT+KT,TQ12,T)1(Q21,T+BT1KT,TAT1)sT1(1)(BT+KT,TQ12,T)1(Π2,t+KT,TΠ1,T+RTΛ)zT1(1)+(BT+KT,TQ12,T)1BT+11ETuT+1(1).

Denoting LT,T−1=(BT−1+KT,TQ12,T−1), we obtain

uT1(1)=LT,T11(Q21,T+BT1KT,TAT1)sT1(1)LT,T11(Π2,t+KT,TΠ1,T+RTΛ)zT1(1)+LT,T11BT+11ETuT+1(1).

Denoting

KT,T1=LT,T11(Q21,T+BT1KT,TAT1)

and

RT1=LT,T11(Π2,t+KT,TΠ1,T+RTΛ),

we have

uT1(1)=KT,T1sT1(1)RT1zT1(1)+LT,T11LT,T1ETuT+1(1).

Following the same derivation as in A for the proof of Proposition 5.1, we obtain the following representation:

(111)ut(1)=KT,tst(1)Rtzt(1),

where Rt can be computed by backward recursion

Rt=LT,t+11(Π2,t+KT,tΠ1,t+Rt+1Λ)

Inserting (42) into (111) gives

Etst+1(1)=Ast(1)+Q11,t+1st(1)+Q12,t+1(KT,tst(1)Rtzt(1))+Π1,t+1zt(1)

After reshuffling we get

Etst+1(1)=(At+1Q12,t+1KT,t)st(1)+(Q12,t+1Rt+Π1,t+1)zt(1).

Denoting 𝔸t =At+1Q12,t+1KT,t and ℙt =−Q12,t+1Rt1,t+1, we have

(112)Etst+1(1)=Atst(1)+tzt(1)

It is easy to see that

[st+1(1)ut+1(1)]Et[st+1(1)ut+1(1)]=[1,t2,t]εt+1=ZΦt+11f5,t+1εt+1.

From (112) it follows that

(Etst+1st+1)+st+1=Atst+tzt,

thus, we obtain

(113)st+1=Atst+tzt+1,tεt+1.

Recall now that the initial conditions are s0(1)=0 and z0(1)=0, then for t=1 from (113) we have

s1(1)=1,0ε1;

for t=2

s2(1)=(A11,0+t)ε1+1,1ε2.

Continuing in this fashion, we get the moving-average representation of st(1):

(114)st(1)=γt,tεt+γt,t1εt1++γt,2ε2+γt,1ε1,

where the coefficients γt,ti can be obtained by forward recursion in t=1, 2, …, T and backward recursion in i=0, 1, …, t−1

γt,t=1,t1,γt,t1=At1γt1,t1+t1,γt,ti=At1γt1,ti+t1Λi1,γt,1=At1γt1,1+t1Λt2

Indeed, inserting (114) into (113) and taking into account zt =εtεt−1+…+Λt−1ε1, we obtain

(115)st+1=At(γt,tεt+γt,t1εt1++γt,2ε2+γt,1ε1)+t(εt+Λεt1++Λt1ε1)+1,tεt+1,

Collecting terms with εj gives

st+1=1,tεt+1+(Atγt,t+t)εt+(Atγt,t1+tΛ)εt1++(Atγt,1+tΛt1)ε1.

Thus, for each t we compute γt,i , starting with the first index t=1, then decreasing the index i=t, t−1, …, 1 and using at each step γt−1,i . For the variable ut(1)we also have a moving-average representation. Inserting the moving-average representation of the process zt(1)and (114) in (111), we have

(116)ut(1)=KT,t(γt,tεt++γt,1ε1)Rt(εt+Λεt1++Λt1ε1),

or in the shorter form

(117)ut(1)=δt,tεt+δt,t1εt1++δt,2ε2+δt,1ε1,

where δt,i =−KT,tγt,iRt Λi−1.

Taking into account that xt(1)=Z11st(1)+Z12ut(1) and yt(1)=Z21st(1)+Z22ut(1), we get the moving-average representation for original variables

xt(1)=ρt,txεt+ρt,t1xεt1++ρt,2xε2+ρt,1xε1,

yt(1)=ρt,tyεt+ρt,t1yεt1++ρt,2yε2+ρt,1yε1,

where ρt,ix=Z11γt,i+Z12δt,i and ρt,iy=Z21γt,i+Z22δt,i.

References

Abraham, R., J. E. Marsden, and T. S. Ratiu. 2001. Manifolds, Tensor Analysis, and Applications, 2nd ed. Berlin: Springer-Verlag.Suche in Google Scholar

Adjemian, S., H. Bastani, M. Juillard, F. Karamé, F. Mihoubi, G. Perendia, J. Pfeifer, M. Ratto, and S. Villemot. 2011. “Dynare: Reference Manual, Version 4.” Working Paper 1, CEPREMA.Suche in Google Scholar

Anderson, G. and G. Moore. 1985. “A Linear Algebraic Procedure for Solving Linear Perfect Foresight Models.” Economics Letters 17: 247–252.10.1016/0165-1765(85)90211-3Suche in Google Scholar

Aruoba, B., J. Fernández-Villaverde, and J. F. Rubio-Ramírez. 2006. “Comparing Solution Methods for Dynamic Equilibrium Economies.” Journal of Economic Dynamics and Control 30: 2477–2508.10.1016/j.jedc.2005.07.008Suche in Google Scholar

Blanchard, O. J., and C. M. Kahn. 1980. “The Solution of Linear Difference Models Under Rational Expectations.” Econometrica 48: 414–435.10.2307/1912186Suche in Google Scholar

Burnside, C. 1998. “Solving Asset Pricing Models with Gaussian Shocks.” Journal of Economic Dynamics and Control 22: 329–340.10.1016/S0165-1889(97)00075-4Suche in Google Scholar

Collard, F., and M. Juillard. 2001. “Accuracy of Stochastic Perturbation Methods: The Case of Asset Pricing Models.” Journal of Economic Dynamics and Control 25: 979–999.10.1016/S0165-1889(00)00064-6Suche in Google Scholar

Fair, R., and J. Taylor. 1983. “Solution and Maximum Likelihood Estimation of Dynamic Rational Expectation Models.” Econometrica 51: 1169–1185.10.2307/1912057Suche in Google Scholar

Gaspar, J., and K. L. Judd. 1997. “Solving Large-Scale Rational-Expectations Models.” Macroeconomic Dynamics 1: 45–75.10.3386/t0207Suche in Google Scholar

Golub, G. H., and C. F. V. Loan. 1996. Matrix Computations, 3rd ed. Baltimore, ML: Johns Hopkins University Press.Suche in Google Scholar

Gomme, P., and P. Klein. 2011. “Second-Order Approximation of Dynamic Models Without the Use of Tensors.” Journal of Economic Dynamics and Control 35: 604–615.10.1016/j.jedc.2010.10.006Suche in Google Scholar

Hartmann, P. 1982. Ordinary Differential Equations, 2nd ed. New York: Wiley.Suche in Google Scholar

Heer, B., and A. Maußnerr. 2008. “Computation of Business Cycle Models: A Comparison of Numerical Methods.” Macroeconomic Dynamics 12: 641–663.10.1017/S1365100508070363Suche in Google Scholar

Hollinger, P. 2008. “How Troll Solves a Million Equations: Sparse-Matrix Techniques for Stacked-Time Solution of Perfect-Foresight Models.” http://www.intex.com/troll/Hollinger_CEF2008.pdf (presentation).Suche in Google Scholar

Holmes, M. 2014. Introduction to Perturbation Methods, 3rd ed. Berlin: Springer-Verlag.Suche in Google Scholar

Jin, H.-H., and K. L. Judd. 2002. “Perturbation Methods for General Dynamic Stochastic Models.” Working Paper 1, Hoover Institution.Suche in Google Scholar

Judd, K. L. 1998. Numerical Methods in Economics, 3rd ed. Cambridge: The MIT Press.Suche in Google Scholar

Judd, K. L., and S.-M. Guu. 1997. “Asymptotic Methods for Aggregate Growth Models.” Journal of Economic Dynamics and Control 21: 1025–1042.10.1016/S0165-1889(97)00015-8Suche in Google Scholar

Juillard, M. 1996. “Dynare: A Program for the Resolution and Simulation of Dynamic Models with Forward Variables Through the Use of a Relaxation Algorithm.” Working Paper 9602, CEPREMAP.Suche in Google Scholar

Kim, J., S. Kim, E. Schaumburg, and C. A. Sims. 2008. “Calculating and Using Second Order Accurate Solutions of Discrete Time Dynamic Equilibrium Models.” Journal of Economic Dynamics and Control 32: 3397–3414.10.1016/j.jedc.2008.02.003Suche in Google Scholar

Klein, P. 2000. “Using the Generalized Schur Form to Solve a Multivariate Linear Rational Expectations Model.” Journal of Economic Dynamics and Control 24: 1405–1423.10.1016/S0165-1889(99)00045-7Suche in Google Scholar

Lombardo, G. 2010. “On Approximating dsge Models by Series Expansions.” Working Paper 1264, ECB.10.2139/ssrn.1699759Suche in Google Scholar

Lombardo, G., and H. Uhlig. 2016. “A Theory of Pruning.” Working Paper 1696, ECB.Suche in Google Scholar

Mehra, R., and E. Prescott. 1985. “The Equity Premium: A Puzzle.” Journal of Monetary Economics 15: 145–161.10.1016/0304-3932(85)90061-3Suche in Google Scholar

Nayfeh, A. H. 1973. Perturbation Methods. New York: Wiley.Suche in Google Scholar

Pichler, P. 2010. “Solving the Multi-Country Real Business Cycle Model Using a Monomial Rule Galerkin Method.” Journal of Economic Dynamics and Control 35: 240–251.10.1016/j.jedc.2010.09.009Suche in Google Scholar

Schmitt-Grohé, S., and M. Uribe. 2004. “Solving Dynamic General Equilibrium Models Using as Second-Order Approximation to the Policy Function.” Journal of Economic Dynamics and Control 28: 755–775.10.1016/S0165-1889(03)00043-5Suche in Google Scholar

Sims, C. 2000. “Solving Linear Rational Expectations Models.” Computational Economics 20: 1–20.10.1023/A:1020517101123Suche in Google Scholar

Uhlig, H. 1999. “A Toolkit for Analysing Nonlinear Dynamic Stochastic Models Easily.” In Computational Methods for the Study of Dynamic Economies, edited by Ramon Marimon and Andrew Scott, 30–61. Oxford, New York: Oxford University Press.10.1093/0199248273.003.0003Suche in Google Scholar


Supplemental Material:

The online version of this article (DOI: 10.1515/snde-2016-0065) offers supplementary material, available to authorized users.


Published Online: 2017-4-12
Published in Print: 2017-4-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/snde-2016-0065/html
Button zum nach oben scrollen