Startseite Learning under signal-to-noise ratio uncertainty
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Learning under signal-to-noise ratio uncertainty

  • Alex Ilek EMAIL logo
Veröffentlicht/Copyright: 14. Februar 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The paper presents an alternative real time adaptive learning algorithm in the presence of signal-to-noise ratio uncertainty. The main innovation of this algorithm is that it uses a gain which is determined within the model: it continuously depends on the extent of misevaluation of parameters embedded in the forecast error. We show that in the presence of signal-to-noise ratio misevaluation, the usage of the proposed learning algorithm is a significant improvement on the Kalman Filter learning algorithm. In a full information case, the Kalman Filter learning algorithm is still the optimal tool.


Corresponding author: Alex Ilek, Research Division, Bank of Israel, Jerusalem 91007, Israel, Tel.: +972-2-6552636, Fax: +972-2-6669521

Published Online: 2013-02-14

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 21.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/snde-2012-0046/pdf
Button zum nach oben scrollen