Pre-selected class-level testing of longitudinal biomarkers reduces required multiple testing corrections to yield novel insights in longitudinal small sample human studies
Abstract
Objectives
Exploratory studies that aim to evaluate novel therapeutic strategies in human cohorts often involve the collection of hundreds of variables measured over time on a small sample of individuals. Stringent error control for testing hypotheses in this setting renders it difficult to identify statistically signification associations. The objective of this study is to demonstrate how leveraging prior information about the biological relationships among variables can increase power for novel discovery.
Methods
We apply the class level association score statistic for longitudinal data (CLASS-LD) as an analysis strategy that complements single variable tests. An example is presented that aims to evaluate the relationships among 14 T-cell and monocyte activation variables measured with CD4 T-cell count over three time points after antiretroviral therapy (n=62).
Results
CLASS-LD using three classes with emphasis on T-cell activation with either classical vs. intermediate/inflammatory monocyte subsets detected associations in two of three classes, while single variable testing detected only one out of the 14 variables considered.
Conclusions
Application of a class-level testing strategy provides an alternative to single immune variables by defining hypotheses based on a collection of variables that share a known underlying biological relationship. Broader use of class-level analysis is expected to increase the available information that can be derived from limited sample clinical studies.
Funding source: National Institutes of Health
Award Identifier / Grant number: UM1AI126620
Funding source: National Institute of Diabetes and Digestive and Kidney Diseases
Award Identifier / Grant number: DK103225
Funding source: National Institute of General Medical Sciences
Award Identifier / Grant number: GM127862
Funding source: National Institute of Allergy and Infectious Diseases
Award Identifier / Grant number: P30AI045008
Acknowledgement
This study was supported by grants to L.J.M.: NIH-funded BEAT-HIV Martin Delaney Collaboratory to cure HIV-1 infection (UM1AI126620, co-funded by NIAID, NIMH, NINDS, and NIDA), UPenn CFAR (P30AI045008), Kean Family Professorship, and the Roberts I. Jacobs of the Philadelphia Foundation and to A.S.F: NIH R01 GM127862 and the CKD Biomarkers Consortium Pilot and Feasibility Studies Program funded by the NIDDK U01 DK103225. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Research funding: This research was funded by National Institutes of Health, UM1AI126620; Kean Family Professorship, and the Philadelphia Foundation, (Roberts I. Jacobs Fund); National Institute of Diabetes and Digestive and Kidney Diseases, DK10322; National Institute of General Medical Sciences, GM127862; and National Institute of Allergy and Infectious Diseases, P30AI045008.
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
Competing interests: Authors state no conflict of interest.
References
Abdel-Mohsen, M., L. Kuri-Cervantes, J. Grau-Exposito, A. M. Spivak, R. A. Nell, C. Tomescu, S. K. Vadrevu, L. B. Giron, C. Serra-Peinado, M. Genesca, J. Castellvi, G. Wu, P. M. Del Rio Estrada, M. Gonzalez-Navarro, K. Lynn, C. T. King, S. Vemula, K. Cox, Y. Wan, Q. Li, K. Mounzer, J. Kostman, I. Frank, M. Paiardini, D. Hazuda, G. Reyes-Teran, D. Richman, B. Howell, P. Tebas, J. Martinez-Picado, V. Planelles, M. J. Buzon, M. R. Betts, and L. J. Montaner. 2018. “CD32 is Expressed on Cells with Transcriptionally Active HIV but does ot Enrich for HIV DNA in Resting T Cells.” Science Translational Medicine 10 (437): 04, https://doi.org/10.1126/scitranslmed.aar6759.Suche in Google Scholar PubMed PubMed Central
Basu, S., Y. Zhang, D. Ray, M. B. Miller, W. G. Iacono, and M. McGue. 2013. “A Rapid Gene-Based Genome-wide Association Test with Multivariate Traits.” Human Heredity 76 (2): 53–63, https://doi.org/10.1159/000356016.Suche in Google Scholar PubMed PubMed Central
Breiman, L. 2001. “Random Forests.” Machine Learning 45: 5–32, https://doi.org/10.1023/a:1010933404324.10.1023/A:1010933404324Suche in Google Scholar
Cobos Jimenez, V., F. W. Wit, M. Joerink, I. Maurer, A. M. Harskamp, J. Schouten, M. Prins, E. M. van Leeuwen, T. Booiman, S. G. Deeks, P. Reiss, N. A. Kootstra, P. Reiss, F. W. Wit, M. van der Valk, J. Schouten, K. W. Kooij, R. A. Van Zoest, B. C. Elsenga, M. Prins, M. Martens, S. Moll, J. Berkel, M. Totte, G. R. Visser, S. Kovalev, S. Zaheri, M. M. Hillebregt, Y. M. Ruijs, D. P. Benschop, P. Reis, F. R. Janssen, M. Heidenrijk, W. Zikkenheiner, L. Boumans, N. A. Kootstra, A. M. Harskamp-Holwerda, I. Maurer, M. M. Mangas Ruiz, A. F. Girigorie, B. Boeser-Nunnink, S. E. Geerlings, M. H. Godfried, A. Goorhuis, J. W. Hovius, F. J. Nellen, J. T. van der Meer, T. van der Poll, J. M. Prins, P. Reiss, M. van der Valk, W. J. Wiersinga, F. W. Wit, J. van Eden, A. M. van Hes, M. Mutschelknauss, H. E. Nobel, F. J. Pijnappel, A. M. Westerman, J. de Jong, P. G. Postema, P. H. Bisschop, M. J. Serlie, P. Lips, E. Dekker, S. E. de Rooij, J. M. Willemsen, L. Vogt, J. Schouten, P. Portegies, B. A. Schmand, G. J. Geurtsen, J. A. Ter Stege, M. Klein Twennaar, B. L. van Eck-Smit, M. de Jong, D. J. Richel, F. D. Verbraak, N. Demirkaya, I. Visser, H. G. Ruhe, P. T. Nieuwkerk, R. P. van Steenwijk, E. Dijkers, C. B. Majoie, M. W. Caan, T. Su, H. W. van Lunsen, M. A. Nievaard, B. J. van den Born, E. S. Stroes, and W. M. Mulder. 2016. “T-cell Activation Independently Associates with Immune Senescence in HIV-Infected Recipients of Long-Term Antiretroviral Treatment.” The Journal of Infectious Diseases 214 (2): 216–25, https://doi.org/10.1093/infdis/jiw146.Suche in Google Scholar PubMed PubMed Central
Cockerham, L. R., J. D. Siliciano, E. Sinclair, U. O’Doherty, S. Palmer, S. A. Yukl, M. C. Strain, N. Chomont, F. M. Hecht, R. F. Siliciano, D. D. Richman, and S. G. Deeks. 2014. “CD4+ and CD8+ T Cell Activation are Associated with HIV DNA in Resting CD4+ T Cells.” PloS One 9 (10): e110731, https://doi.org/10.1371/journal.pone.0110731.Suche in Google Scholar PubMed PubMed Central
Dube, M. P., E. S. Chan, J. E. Lake, B. Williams, J. Kinslow, A. Landay, R. W. Coombs, M. Floris-Moore, H. J. Ribaudo, and K. E. Yarasheski. 2019. “A Randomized, Double-Blinded, Placebo-Controlled Trial of Sitagliptin for Reducing Inflammation and Immune Activation in Treated and Suppressed Human Immunodeficiency Virus Infection.” Clinical Infectious Diseases 69 (7): 1165–72, https://doi.org/10.1093/cid/ciy1051.Suche in Google Scholar PubMed PubMed Central
Fitzmaurice, G. M., N. M. Laird, and J. H. Ware. 2004. Applied Longitudinal Analysis. Hoboken, NJ: John Wiley & Sons.Suche in Google Scholar
Gandhi, R. T., D. K. McMahon, R. J. Bosch, C. M. Lalama, J. C. Cyktor, B. J. Macatangay, C. R. Rinaldo, S. A. Riddler, E. Hogg, C. Godfrey, A. C. Collier, J. J. Eron, and J. W. Mellors. 2017. “Levels of HIV-1 Persistence on Antiretroviral Therapy are ot Associated with Markers of Inflammation or Activation.” PLoS Pathogens 13 (4): e1006285, https://doi.org/10.1371/journal.ppat.1006285.Suche in Google Scholar PubMed PubMed Central
Iannetta, M., S. Savinelli, R. Rossi, C. Mascia, R. Marocco, S. Vita, P. Zuccala, M. A. Zingaropoli, F. Mengoni, A. P. Massetti, M. Falciano, G. d’Ettorre, M. R. Ciardi, C. M. Mastroianni, V. Vullo, and M. Lichtner. 2019. “Myeloid and Lymphoid Activation Markers in AIDS and Non-AIDS Presenters.” Immunobiology 224 (2): 231–41, https://doi.org/10.1016/j.imbio.2018.11.011.Suche in Google Scholar PubMed
Johnson, R. A., and D. W. Wichern, eds. 1988. Applied Multivariate Statistical Analysis. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.10.2307/2531616Suche in Google Scholar
Kasang, C., S. Kalluvya, C. Majinge, G. Kongola, M. Mlewa, I. Massawe, R. Kabyemera, K. Magambo, A. Ulmer, H. Klinker, E. Gschmack, A. Horn, E. Koutsilieri, W. Preiser, D. Hofmann, J. Hain, A. Muller, L. Dolken, B. Weissbrich, A. Rethwilm, A. Stich, and C. Scheller. 2016. “Effects of Prednisolone on Disease Progression in Antiretroviral-Untreated HIV Infection: A 2-Year Randomized, Double-Blind Placebo-Controlled Clinical Trial.” PLoS ONE 11 (1): e0146678, https://doi.org/10.1371/journal.pone.0146678.Suche in Google Scholar PubMed PubMed Central
Li, M. X., H. S. Gui, J. S. Kwan, and P. C. Sham. 2011. “GATES: A Rapid and Powerful Gene-Based Association Test Using Extended Simes Procedure.” The American Journal of Human Genetics 88 (3): 283–93, https://doi.org/10.1016/j.ajhg.2011.01.019.Suche in Google Scholar PubMed PubMed Central
Li, Y., G. T. O’Connor, J. Dupuis, and E. Kolaczyk. 2015. “Modeling Gene-Covariate Interactions in Sparse Regression with Group Structure for Genome-wide Association Studies.” Statistical Applications in Genetics and Molecular Biology 14 (3): 265–77, https://doi.org/10.1515/sagmb-2014-0073.Suche in Google Scholar PubMed PubMed Central
Liu, J. Z., A. F. McRae, D. R. Nyholt, S. E. Medland, N. R. Wray, K. M. Brown, N. K. Hayward, G. W. Montgomery, P. M. Visscher, N. G. Martin, S. Macgregor, G. J. Mann, R. F. Kefford, J. L. Hopper, J. F. Aitken, G. G. Giles, and B. K. Armstrong. 2010. “A Versatile Gene-Based Test for Genome-wide Association Studies.” The American Journal of Human Genetics 87 (1): 139–45, https://doi.org/10.1016/j.ajhg.2010.06.009.Suche in Google Scholar PubMed PubMed Central
Ma, L., A. G. Clark, and A. Keinan. 2013. “Gene-based Testing of Interactions in Association Studies of Quantitative Traits.” PLoS Genetics 9 (2): e1003321, https://doi.org/10.1371/journal.pgen.1003321.Suche in Google Scholar PubMed PubMed Central
Neale, B. M., and P. C. Sham. 2004. “The Future of Association Studies: Gene-Based Analysis and Replication.” The American Journal of Human Genetics 75 (3): 353–62, https://doi.org/10.1086/423901.Suche in Google Scholar PubMed PubMed Central
Qian, J., S. Nunez, S. Kim, M. P. Reilly, and A. S. Foulkes. 2017. “A Score Test for Genetic Class-Level Association with Nonlinear Biomarker Trajectories.” Statistics in Medicine 36 (19): 3075–91, https://doi.org/10.1002/sim.7314.Suche in Google Scholar PubMed PubMed Central
Qian, J., S. Nunez, E. Reed, M. P. Reilly, and A. S. Foulkes. 2016. “A Simple Test of Class-Level Genetic Association Can Reveal Novel Cardiometabolic Trait Loci.” PloS One 11 (2): e0148218, https://doi.org/10.1371/journal.pone.0148218.Suche in Google Scholar PubMed PubMed Central
Patro, S. C., L. Azzoni, J. Joseph, M. G. Fair, J. G. Sierra-Madero, M. S. Rassool, I. Sanne, and L. J. Montaner. 2016. “Antiretroviral Therapy in HIV-1-Infected Individuals with CD4 Count below 100 Cells/mm3 Results in Differential Recovery of Monocyte Activation.” Journal of Leukocyte Biology 100 (1): 223–31, https://doi.org/10.1189/jlb.5ab0915-406r.Suche in Google Scholar
Ruggiero, A., W. De Spiegelaere, A. Cozzi-Lepri, M. Kiselinova, G. Pollakis, A. Beloukas, L. Vandekerckhove, M. Strain, D. Richman, A. Phillips, A. M. Geretti, P. Vitiello, N. Mackie, J. Ainsworth, A. Waters, F. Post, S. Edwards, and J. Fox. During. 2015. “Stably Suppressive Antiretroviral Therapy Integrated HIV-1 DNA Load in Peripheral Blood is Associated with the Frequency of CD8 Cells Expressing HLA-DR/DP/DQ.” EBioMedicine 2 (9): 1153–9, https://doi.org/10.1016/j.ebiom.2015.07.025.Suche in Google Scholar PubMed PubMed Central
Serrano-Villar, S., C. Gutierrez, A. Vallejo, B. Hernandez-Novoa, L. Diaz, M. Abad Fernandez, N. Madrid, F. Dronda, J. Zamora, M. A. Munoz-Fernandez, and S. Moreno. 2013. “The CD4/CD8 Ratio in HIV-Infected Subjects is Independently Associated with T-Cell Activation Despite Long-Term Viral Suppression.” Journal of Infection 66 (1): 57–66, https://doi.org/10.1016/j.jinf.2012.09.013.Suche in Google Scholar PubMed
Serrano-Villar, S., T. Sainz, S. A. Lee, P. W. Hunt, E. Sinclair, B. L. Shacklett, A. L. Ferre, T. L. Hayes, M. Somsouk, P. Y. Hsue, M. L. Van Natta, C. L. Meinert, M. M. Lederman, H. Hatano, V. Jain, Y. Huang, F. M. Hecht, J. N. Martin, J. M. McCune, S. Moreno, and S. G. Deeks. 2014. “HIV-infected Individuals with Low CD4/CD8 Ratio Despite Effective Antiretroviral Therapy Exhibit Altered T Cell Subsets, Heightened CD8+ T Cell Activation, and Increased Risk of Non-AIDS Morbidity and Mortality.” PLoS Pathogens 10 (5): e1004078, https://doi.org/10.1371/journal.ppat.1004078.Suche in Google Scholar PubMed PubMed Central
Serrano-Villar, S., T. Sainz, Z. M. Ma, N. S. Utay, T. W. Chun, T. Wook-Chun, S. Mann, A. D. Kashuba, B. Siewe, A. Albanese, P. Troia-Cancio, E. Sinclair, A. Somasunderam, T. Yotter, S. G. Deeks, A. Landay, R. B. Pollard, C. J. Miller, S. Moreno, and D. M. Asmuth. 2016. “Effects of Combined CCR5/Integrase Inhibitors-Based Regimen on Mucosal Immunity in HIV-Infected Patients Naive to Antiretroviral Therapy: A Pilot Randomized Trial.” PLoS Pathogens 12 (1): e1005381, https://doi.org/10.1371/journal.ppat.1005381.Suche in Google Scholar
Sierra-Madero, J. G., S. Ellenberg, M. S. Rassool, A. Tierney, P. F. Belaunzaran-Zamudio, A. Lopez-Martinez, A. Pineirua-Menendez, L. J. Montaner, L. Azzoni, C. R. Benitez, I. Sereti, J. Andrade-Villanueva, J. L. Mosqueda-Gomez, B. Rodriguez, I. Sanne, and M. M. Lederman. 2014. “A Randomized, Double-Blind, Placebo-Controlled Clinical Trial of a Chemokine Receptor 5 (CCR5) Antagonist to Decrease the Occurrence of Immune Reconstitution Inflammatory Syndrome in HIV-Infection: The CADIRIS Study.” Lancet HIV 1 (2): e60–7, https://doi.org/10.1016/s2352-3018(14)70027-x.Suche in Google Scholar
Tibshirani, R. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal Statistical Society 58: 267–88, https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.Suche in Google Scholar
Van der Sluis, S., C. V. Dolan, J. Li, Y. Song, P. Sham, D. Posthuma, and M. X. Li. 2015. “MGAS: A Powerful Tool for Multivariate Gene-Based Genome-wide Association Analysis.” Bioinformatics 31 (7): 1007–15, https://doi.org/10.1093/bioinformatics/btu783.Suche in Google Scholar PubMed PubMed Central
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Editorial
- Forward
- Research Articles
- Pre-selected class-level testing of longitudinal biomarkers reduces required multiple testing corrections to yield novel insights in longitudinal small sample human studies
- Joint modeling of time-varying HIV exposure and infection for estimation of per-act efficacy in HIV prevention trials
- Comparison of empirical and dynamic models for HIV viral load rebound after treatment interruption
- Comparison of machine learning methods for predicting viral failure: a case study using electronic health record data
- A semiparametric method for the analysis of outcomes during a gap in HIV care under incomplete outcome ascertainment
- Errors in multiple variables in human immunodeficiency virus (HIV) cohort and electronic health record data: statistical challenges and opportunities
- Challenges in evaluating the use of viral sequence data to identify HIV transmission networks for public health
- Evaluating the relative contribution of data sources in a Bayesian analysis with the application of estimating the size of hard to reach populations
Artikel in diesem Heft
- Editorial
- Forward
- Research Articles
- Pre-selected class-level testing of longitudinal biomarkers reduces required multiple testing corrections to yield novel insights in longitudinal small sample human studies
- Joint modeling of time-varying HIV exposure and infection for estimation of per-act efficacy in HIV prevention trials
- Comparison of empirical and dynamic models for HIV viral load rebound after treatment interruption
- Comparison of machine learning methods for predicting viral failure: a case study using electronic health record data
- A semiparametric method for the analysis of outcomes during a gap in HIV care under incomplete outcome ascertainment
- Errors in multiple variables in human immunodeficiency virus (HIV) cohort and electronic health record data: statistical challenges and opportunities
- Challenges in evaluating the use of viral sequence data to identify HIV transmission networks for public health
- Evaluating the relative contribution of data sources in a Bayesian analysis with the application of estimating the size of hard to reach populations