Startseite Bayesian Design of Agricultural Disease Transmission Experiments for Individual Level Models
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bayesian Design of Agricultural Disease Transmission Experiments for Individual Level Models

  • Grace P. S. Kwong EMAIL logo , Rob Deardon , Scott Hunt und Michele T. Guerin
Veröffentlicht/Copyright: 23. Oktober 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Here, we address the issue of experimental design for animal and crop disease transmission experiments, where the goal is to identify some characteristic of the underlying infectious disease system via a mechanistic disease transmission model. Design for such non-linear models is complicated by the fact that the optimal design depends upon the parameters of the model, so the problem is set in simulation-based, Bayesian framework using informative priors. This involves simulating the experiment over a given design repeatedly using parameter values drawn from the prior, calculating a Monte Carlo estimate of the utility function from those simulations for the given design, and then repeating this over the design space in order to find an optimal design or set of designs.

Here we consider two agricultural scenarios. The first involves an experiment to characterize the effectiveness of a vaccine-based treatment on an animal disease in an in-barn setting. The design question of interest is on which days to make observations if we are limited to being able to observe the disease status of all animals on only two days. The second envisages a trial being carried out to estimate the spatio-temporal transmission dynamics of a crop disease. The design question considered here is how far apart to space the plants from each other to best capture those dynamics. In the in-barn animal experiment, we see that for the prior scenarios considered, observations taken very close to the beginning of the experiment tend to lead to designs with the highest values of our chosen utility functions. In the crop trial, we see that over the prior scenarios considered, spacing between plants is important for experimental performance, with plants being placed too close together being particularly deleterious to that performance.

References

Anderson, R., and R. May. 1991. Infectious Diseases of Humans. New York: Oxford University Press.10.1093/oso/9780198545996.001.0001Suche in Google Scholar

Becker, N. G., and T. Britton. 2001. “Design Issues for Studies of Infectious Diseases.” Journal of Statistical Planning and Inference 96: 41–66.10.1016/S0378-3758(00)00323-2Suche in Google Scholar

Becker, N. G., and G. Kersting. 1983. “Design Problems for the Pure Birth Process.” Advances in Applied Probability 15 (2): 255–73.10.2307/1426436Suche in Google Scholar

Clyde, M. A. 2001. “Experimental Design: A Bayesian Perspective.” In International Encyclopedia of the Social and Behavioral Sciences, edited by Smelser et al. New York: Elsevier Science.10.1016/B0-08-043076-7/00421-6Suche in Google Scholar

Cook, A. R., G. J. Gibson, and C. A. Gilligan. 2008. “Optimal Observation Times in Experimental Epidemic Processes.” Biometrics 64 (3): 860–68.10.1111/j.1541-0420.2007.00931.xSuche in Google Scholar PubMed

Deardon, R., S. P. Brooks, B. T. Grenfell, M. J. Keeling, M. J. Tildesley, N. J. Savill, D. J. Shaw, and M. E. J. Woolhouse. 2010. “Inference for Individual-Level Models of Infectious Diseases in Large Populations.” Statistica Sinica 20: 239–61.Suche in Google Scholar

Deardon, R., S. G. Gilmour, N. A. Butler, K. Phelps, and R. Kennedy. 2004. “A Method for Ascertaining and Controlling Representation Bias in Field Trials for Airborne Plant Pathogens.” Journal of Applied Statistics 31 (3): 329–43.10.1080/0266476042000184073Suche in Google Scholar

Deardon, R., S. G. Gilmour, N. A. Butler, K. Phelps, and R. Kennedy. 2006. “Designing Field Experiments which are Subject to Representation Bias.” Journal of Applied Statistics 33 (7): 663–78.10.1080/02664760600708681Suche in Google Scholar

Dehideniya, M. B., C. C. Drovandi, and J. M. McGree. 2018. “Optimal Bayesian Design for Discriminating Between Models with Intractable Likelihoods in Epidemiology.” Computational Statistics & Data Analysis 124 (C): 277–97.10.1016/j.csda.2018.03.004Suche in Google Scholar

Drovandi, C. C., and A. N. Pettitt. 2013. “Bayesian Experimental Design for Models with Intractable Likelihoods.” Biometrics 69 (4): 937–48.10.1111/biom.12081Suche in Google Scholar PubMed

Garthwaite, P. H., J. B. Kadane, and A. O’Hagan. 2005. “Statistical Methods for Eliciting Probability Distributions.” Journal of the American Statistical Association 100 (470): 680–701.10.1198/016214505000000105Suche in Google Scholar

Hainy M., Müller W .G., and Wagner H. 2013. “Likelihood-Free Simulation-Based Optimal Design: An Introduction.” In Springer Proceedings in Mathematics & Statistics, edited by V. Melas, S. Mignani, P. Monari, L. Salmaso, Topics in Statistical Simulation., vol 114. New York, NY: Springer.10.1007/978-1-4939-2104-1_26Suche in Google Scholar

Huan, X., and Y. M. Marzouk. 2013. “Simulation-Based Optimal Bayesian Experimental Design for Nonlinear Systems.” Journal of Computational Physics 232 (1): 288–317.10.1016/j.jcp.2012.08.013Suche in Google Scholar

Hughes, G., N. McRoberts, L. V. Madden, and S. C. Nelson. 1997. “Validating Mathematical Models of Plant-Disease Progress in Space and Time.” Mathematical Medicine and Biology: A Journal of the IMA 14 (2): 85–112.10.1093/imammb/14.2.85Suche in Google Scholar

Kwong, G. P., Z. Poljak, R. Deardon, and C. E. Dewey. 2013. “Bayesian Analysis of Risk Factors for Infection with a Genotype of Porcine Reproductive and Respiratory Syndrome Virus in Ontario Swine Herds Using Monitoring Data.” Preventive Veterinary Medicine 110 (3): 405–17.10.1016/j.prevetmed.2013.01.004Suche in Google Scholar

Leone, F. C., L. S. Nelson, and R. B. Nottingham. 1961. “The Folded Normal Distribution.” Technometrics 3 (4): 543–50.10.1080/00401706.1961.10489974Suche in Google Scholar

McKinley, T. J., J. V. Ross, R. Deardon, and A. R. Cook. 2014. “Simulation-Based Bayesian Inference for Epidemic Models.” Computational Statistics & Data Analysis 71: 434–47.10.1016/j.csda.2012.12.012Suche in Google Scholar

Mondaca-Fernandez, E., T. Meyns, C. Muoz-Zanzi, C. Trincado, and R. B. Morrison. 2007. “Experimental Quantification of the Transmission of Porcine Reproductive and Respiratory Syndrome Virus.” Canadian Journal of Veterinary Research 71 (2): 157–60.Suche in Google Scholar

Muller, P. 1999. “Simulation-Based Optimal Design.” Bayesian Statistics 6: 459–74.10.1016/S0169-7161(05)25017-4Suche in Google Scholar

Overstall, A. M., and D. C. Woods. 2017. “Bayesian Design of Experiments Using Approximate Coordinate Exchange.” Technometrics 59 (4): 458–70.10.1080/00401706.2016.1251495Suche in Google Scholar

Pagendam, D. E., and P. K. Pollett. 2009. “Optimal Sampling and Problematic Likelihood Functions in a Simple Population Model.” Environmental Modeling and Assessment 14 (6): 759–67.10.1007/s10666-008-9159-1Suche in Google Scholar

Pagendam, D. E., and P. K. Pollett. 2010. “Locally Optimal Designs for the Simple Death Process.” Journal of Statistical Planning and Inference 140 (11): 3096–105.10.1016/j.jspi.2010.04.017Suche in Google Scholar

Pokharel, G., and R. Deardon. 2016. “Gaussian Process Emulators for Spatial Individual-Level Models of Infectious Disease.” Canadian Journal of Statistics 44 (4): 480–501.10.1002/cjs.11304Suche in Google Scholar

Romanescu, R., and R. Deardon. 2016. “Modelling Two Strains of Disease Via Aggregate-Level Infectivity Curves.” Journal of Mathematical Biology 72 (5): 1195–224.10.1007/s00285-015-0910-3Suche in Google Scholar

Ryan, E., C. Drovandi, and A. Pettitt. 2015. “Simulation-Based Fully Bayesian Experimental Design for Mixed Effects Models.” Computational Statistics & Data Analysis 92.10.1016/j.csda.2015.06.007Suche in Google Scholar

Ryan, E. G., C. C. Drovandi, J. M. McGree, and A. N. Pettitt. 2016. “A Review of Modern Computational Algorithms for Bayesian Optimal Design.” International Statistical Review 84 (1): 128–54.10.1111/insr.12107Suche in Google Scholar

Velthuis, A., M. D. Jong, E. Kamp, N. Stockhofe, and J. Verheijden. 2003. “Design and Analysis of an Actinobacillus Pleuropneumoniae Transmission Experiment.” Preventive Veterinary Medicine 60 (1): 53–68.10.1016/S0167-5877(03)00082-5Suche in Google Scholar

Woods, D. C., A. M. Overstall, M. Adamou, and T. W. Waite. 2017. “Bayesian Design of Experiments for Generalized Linear Models and Dimensional Analysis with Industrial and Scientific Application.” Quality Engineering 29 (1): 91–103.Suche in Google Scholar

Received: 2019-03-13
Revised: 2019-06-14
Accepted: 2019-09-23
Published Online: 2019-10-23

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/scid-2018-0005/html
Button zum nach oben scrollen