Abstract
Response selective sampling design is commonly adopted in genetic epidemiologic study because it can substantially reduce time cost and increase power of identifying deleterious genetic variants predispose to human complex disease comparing with prospective design. The proportional odds model (POM) can be used to fit data obtained by this design. Unlike the logistic regression model, the estimated genetic effect based on POM by taking data as being enrolled prospectively is inconsistent. So the power of resulted Wald test is not satisfactory. The modified POM is suitable to fit this type of data, however, the corresponding Wald test is not optimal when the genetic effect is small. Here, we propose a new association test to handle this issue. Simulation studies show that the proposed test can control the type I error rate correctly and is more powerful than two existing methods. Finally, we applied three tests to Anticyclic Citrullinated Protein Antibody data from Genetic Workshop 16.
Acknowledgements
We thank the editors and two reviewers for careful review and insightful comments, which have led to a significant improvement of the article. This research was supported by the Beijing Natural Science Foundation, No. Z180006, and National Science Foundation of China (11722113, 11501134).
References
Amos, C. I., W. Chen, M. F. Seldin, E. F. Remmers, K. E. Taylor, L. A. Criswell, A. T. Lee, R. M. Plenge, D. L. Kastner and P. K. Gregersen (2009): “Data for genetic analysis workshop 16 problem 1, association analysis of rheumatoid arthritis data,” BMC Proc., 3, S2.10.1186/1753-6561-3-S7-S2Suche in Google Scholar PubMed PubMed Central
Barton, A., W. Thomson, X. Ke, S. Eyre, A. Hinks, J. Bowes, D. Plant, L. J. Gibbons, A. G. Wilson and D. E. Bax (2008): “Rheumatoid arthritis susceptibility loci at chromosomes 10p15, 12q13 and 22q13,” Nature Genet., 40, 1156–1159.10.1038/ng.218Suche in Google Scholar PubMed PubMed Central
Bedogni, G., H. S. Kahn, S. Bellentani and C. Tiribelli (2010): “A simple index of lipid overaccumulation is a good marker of liver steatosis,” BMC Gastroenterol., 10, 98.10.1186/1471-230X-10-98Suche in Google Scholar PubMed PubMed Central
Behrouzi, P. and E. C. Wit (2017a): “Detecting epistatic selection with partially observed genotype data by using copula graphical models,” J. R. Stat. Soc. Ser. C-Appl. Stat, DOI: 10.1111/rssc.12287.Suche in Google Scholar
Behrouzi, P. and E. C. Wit (2017b): “Netgwas: an R package for network-based genome-wide association studies,” Preprint arXiv:1710.01236.10.32614/CRAN.package.netgwasSuche in Google Scholar
Cosslett, S. R. (1981): “Maximum likelihood estimator for choice-based samples,” Econometrica, 49, 1289–1316.10.2307/1912755Suche in Google Scholar
Ellis, J. A., K. J. Scurrah, J. E. Cobb, S. G. Zaloumis, A. E. Duncan and S. B. Harrap (2007): “Baldness and the androgen receptor: the AR polyglycine repeat polymorphism does not confer susceptibility to androgenetic alopecia,” Hum. Genet., 121, 451–457.10.1007/s00439-006-0317-8Suche in Google Scholar PubMed
Fernandez-Navarro, P., G. Pita, C. Santamarina, M. P. Moreno, C. Vidal, J. Miranda-Garcia, N. Ascunce, F. Casanova, F. Collado-Garcia, B. Herraez, A. Gonzalez-Neira, J. Benitez and M. Pollan (2013): “Association analysis between breast cancer genetic variants and mammographic density in a large population-based study (Determinants of Density in Mammographies in Spain) identifies susceptibility loci in TOX3 gene,” Eur. J. Cancer, 49, 474–481.10.1016/j.ejca.2012.08.026Suche in Google Scholar PubMed
Hsieh, D. A., C. F. Manski and D. McFadden (1985): “Estimation of response probabilities from augmented retrospective observations,” J. Am. Stat. Assoc., 80, 651–662.10.1080/01621459.1985.10478165Suche in Google Scholar
Liu, H., F. Han, M. Yuan, J. Lafferty and L. Wasserman (2012): “High-dimensional semiparametric Gaussian copula graphical models,” Ann. Stat., 40, 2293–2326.10.1214/12-AOS1037Suche in Google Scholar
Korse, C. M., B. G. Taal, C. A. de Groot, R. H. Bakker and J. M. Bonfrer (2009): “Chromogranin-A and N-terminal pro-brain natriuretic peptide: an excellent pair of biomarkers for diagnostics in patients with neuroendocrine tumor,” J. Clin. Oncol., 27, 4293–4299.10.1200/JCO.2008.18.7047Suche in Google Scholar PubMed
Lawless, J. F., J. D. Kalbfleisch and C. J. Wild (1999): “Semiparametric methods for response-selective and missing data problems in regression,” J. R. Statist. Soc. B, 61, 413–438.10.1111/1467-9868.00185Suche in Google Scholar
Li, Q. and K. Yu (2008):“Improved correction for population stratification in genome-wide association studies by identifying hidden population structures,” Genet. Epidemiol., 32, 215–226.10.1002/gepi.20296Suche in Google Scholar PubMed
Lope, V., B. Pérez-Gómez, C. Sánchez-Contador, M. C. Santamariña, P. Moreo, C. Vidal, M. S. Laso, M. Ederra, C. Pedraz-Pingarrón and I. González-Román (2012): “Obstetric history and mammographic density: a population-based cross-sectional study in Spain (DDM-Spain),” Breast Cancer Res. Treat., 132, 1137–1146.10.1007/s10549-011-1936-xSuche in Google Scholar PubMed
Mahmood, S. S., D., Levy, R. S., Vasan and T. J. Wang (2014): “The framingham heart study and the epidemiology of cardiovascular disease: a historical perspective,” Lancet, 383, 999–1008.10.1016/S0140-6736(13)61752-3Suche in Google Scholar PubMed
McCullagh, P. (1980): “Regression models for ordinal data,” J. Royal Stat. Soci. Ser. B, 42, 109–142.10.1111/j.2517-6161.1980.tb01109.xSuche in Google Scholar
O’Reilly, P. F., C. J. Hoggart, Y. Pomyen, F. C. Calboli, P. Elliott, M.-R. Jarvelin and L. J. Coin (2012): “MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS,” PLoS One, 7, e34861.10.1371/journal.pone.0034861Suche in Google Scholar PubMed
Prentice, R. L. and R. Pyke (1979): “Logistic disease incidence models and case-control studies,” Biometrika, 66, 403–411.10.1093/biomet/66.3.403Suche in Google Scholar
Schiffman, M., P. E. Castle, J. Jeronimo, A. C. Rodriguez and S. Wacholder (2007): “Human papillomavirus and cervical cancer,” Lancet, 370, 890–907.10.1016/S0140-6736(07)61416-0Suche in Google Scholar PubMed
Stefanski, L. A. and D. D. Boos (2002): “The calculus of M-estimation,” Am. Stat., 56, 29–38.10.1198/000313002753631330Suche in Google Scholar
Storey, J. D. and R. Tibshirani (2003): “Statistical significance for genomewide studies,” Proc. Natl. Acad. Sci., 100, 9440–9445.10.1073/pnas.1530509100Suche in Google Scholar PubMed PubMed Central
Weinberg, C. R. and S. Wacholder (1993): “Prospective analysis of case-control data under general multiplicative-intercept risk models,” Biometrika, 80, 461–465.10.1093/biomet/80.2.461Suche in Google Scholar
Wellcome Trust Case Control Consortium (2007): “Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls,” Nature, 447, 661.10.1038/nature05911Suche in Google Scholar PubMed PubMed Central
Zhang, W. and Q. Li (2016): “Incorporating Hardy-Weinberg equilibrium law to enhance the association strength for ordinal trait genetic study,” Ann. Hum. Genet., 80, 102–112.10.1111/ahg.12142Suche in Google Scholar PubMed
Zhang, W., Z. Zhang, X. Li and Q. Li (2015): “Fitting proportional odds model to case-control data with incorporating Hardy-Weinberg equilibrium,” Sci. Rep., 5, 17286.10.1038/srep17286Suche in Google Scholar PubMed PubMed Central
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Research Articles
- LCox: a tool for selecting genes related to survival outcomes using longitudinal gene expression data
- A powerful test for ordinal trait genetic association analysis
- A multivariate linear model for investigating the association between gene-module co-expression and a continuous covariate
- Discrete Wavelet Packet Transform Based Discriminant Analysis for Whole Genome Sequences
Artikel in diesem Heft
- Research Articles
- LCox: a tool for selecting genes related to survival outcomes using longitudinal gene expression data
- A powerful test for ordinal trait genetic association analysis
- A multivariate linear model for investigating the association between gene-module co-expression and a continuous covariate
- Discrete Wavelet Packet Transform Based Discriminant Analysis for Whole Genome Sequences