Startseite A powerful test for ordinal trait genetic association analysis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A powerful test for ordinal trait genetic association analysis

  • Yuan Xue , Jinjuan Wang , Juan Ding , Sanguo Zhang und Qizhai Li EMAIL logo
Veröffentlicht/Copyright: 26. Januar 2019

Abstract

Response selective sampling design is commonly adopted in genetic epidemiologic study because it can substantially reduce time cost and increase power of identifying deleterious genetic variants predispose to human complex disease comparing with prospective design. The proportional odds model (POM) can be used to fit data obtained by this design. Unlike the logistic regression model, the estimated genetic effect based on POM by taking data as being enrolled prospectively is inconsistent. So the power of resulted Wald test is not satisfactory. The modified POM is suitable to fit this type of data, however, the corresponding Wald test is not optimal when the genetic effect is small. Here, we propose a new association test to handle this issue. Simulation studies show that the proposed test can control the type I error rate correctly and is more powerful than two existing methods. Finally, we applied three tests to Anticyclic Citrullinated Protein Antibody data from Genetic Workshop 16.

Acknowledgements

We thank the editors and two reviewers for careful review and insightful comments, which have led to a significant improvement of the article. This research was supported by the Beijing Natural Science Foundation, No. Z180006, and National Science Foundation of China (11722113, 11501134).

References

Amos, C. I., W. Chen, M. F. Seldin, E. F. Remmers, K. E. Taylor, L. A. Criswell, A. T. Lee, R. M. Plenge, D. L. Kastner and P. K. Gregersen (2009): “Data for genetic analysis workshop 16 problem 1, association analysis of rheumatoid arthritis data,” BMC Proc., 3, S2.10.1186/1753-6561-3-S7-S2Suche in Google Scholar PubMed PubMed Central

Barton, A., W. Thomson, X. Ke, S. Eyre, A. Hinks, J. Bowes, D. Plant, L. J. Gibbons, A. G. Wilson and D. E. Bax (2008): “Rheumatoid arthritis susceptibility loci at chromosomes 10p15, 12q13 and 22q13,” Nature Genet., 40, 1156–1159.10.1038/ng.218Suche in Google Scholar PubMed PubMed Central

Bedogni, G., H. S. Kahn, S. Bellentani and C. Tiribelli (2010): “A simple index of lipid overaccumulation is a good marker of liver steatosis,” BMC Gastroenterol., 10, 98.10.1186/1471-230X-10-98Suche in Google Scholar PubMed PubMed Central

Behrouzi, P. and E. C. Wit (2017a): “Detecting epistatic selection with partially observed genotype data by using copula graphical models,” J. R. Stat. Soc. Ser. C-Appl. Stat, DOI: 10.1111/rssc.12287.Suche in Google Scholar

Behrouzi, P. and E. C. Wit (2017b): “Netgwas: an R package for network-based genome-wide association studies,” Preprint arXiv:1710.01236.10.32614/CRAN.package.netgwasSuche in Google Scholar

Cosslett, S. R. (1981): “Maximum likelihood estimator for choice-based samples,” Econometrica, 49, 1289–1316.10.2307/1912755Suche in Google Scholar

Ellis, J. A., K. J. Scurrah, J. E. Cobb, S. G. Zaloumis, A. E. Duncan and S. B. Harrap (2007): “Baldness and the androgen receptor: the AR polyglycine repeat polymorphism does not confer susceptibility to androgenetic alopecia,” Hum. Genet., 121, 451–457.10.1007/s00439-006-0317-8Suche in Google Scholar PubMed

Fernandez-Navarro, P., G. Pita, C. Santamarina, M. P. Moreno, C. Vidal, J. Miranda-Garcia, N. Ascunce, F. Casanova, F. Collado-Garcia, B. Herraez, A. Gonzalez-Neira, J. Benitez and M. Pollan (2013): “Association analysis between breast cancer genetic variants and mammographic density in a large population-based study (Determinants of Density in Mammographies in Spain) identifies susceptibility loci in TOX3 gene,” Eur. J. Cancer, 49, 474–481.10.1016/j.ejca.2012.08.026Suche in Google Scholar PubMed

Hsieh, D. A., C. F. Manski and D. McFadden (1985): “Estimation of response probabilities from augmented retrospective observations,” J. Am. Stat. Assoc., 80, 651–662.10.1080/01621459.1985.10478165Suche in Google Scholar

Liu, H., F. Han, M. Yuan, J. Lafferty and L. Wasserman (2012): “High-dimensional semiparametric Gaussian copula graphical models,” Ann. Stat., 40, 2293–2326.10.1214/12-AOS1037Suche in Google Scholar

Korse, C. M., B. G. Taal, C. A. de Groot, R. H. Bakker and J. M. Bonfrer (2009): “Chromogranin-A and N-terminal pro-brain natriuretic peptide: an excellent pair of biomarkers for diagnostics in patients with neuroendocrine tumor,” J. Clin. Oncol., 27, 4293–4299.10.1200/JCO.2008.18.7047Suche in Google Scholar PubMed

Lawless, J. F., J. D. Kalbfleisch and C. J. Wild (1999): “Semiparametric methods for response-selective and missing data problems in regression,” J. R. Statist. Soc. B, 61, 413–438.10.1111/1467-9868.00185Suche in Google Scholar

Li, Q. and K. Yu (2008):“Improved correction for population stratification in genome-wide association studies by identifying hidden population structures,” Genet. Epidemiol., 32, 215–226.10.1002/gepi.20296Suche in Google Scholar PubMed

Lope, V., B. Pérez-Gómez, C. Sánchez-Contador, M. C. Santamariña, P. Moreo, C. Vidal, M. S. Laso, M. Ederra, C. Pedraz-Pingarrón and I. González-Román (2012): “Obstetric history and mammographic density: a population-based cross-sectional study in Spain (DDM-Spain),” Breast Cancer Res. Treat., 132, 1137–1146.10.1007/s10549-011-1936-xSuche in Google Scholar PubMed

Mahmood, S. S., D., Levy, R. S., Vasan and T. J. Wang (2014): “The framingham heart study and the epidemiology of cardiovascular disease: a historical perspective,” Lancet, 383, 999–1008.10.1016/S0140-6736(13)61752-3Suche in Google Scholar PubMed

McCullagh, P. (1980): “Regression models for ordinal data,” J. Royal Stat. Soci. Ser. B, 42, 109–142.10.1111/j.2517-6161.1980.tb01109.xSuche in Google Scholar

O’Reilly, P. F., C. J. Hoggart, Y. Pomyen, F. C. Calboli, P. Elliott, M.-R. Jarvelin and L. J. Coin (2012): “MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS,” PLoS One, 7, e34861.10.1371/journal.pone.0034861Suche in Google Scholar PubMed

Prentice, R. L. and R. Pyke (1979): “Logistic disease incidence models and case-control studies,” Biometrika, 66, 403–411.10.1093/biomet/66.3.403Suche in Google Scholar

Schiffman, M., P. E. Castle, J. Jeronimo, A. C. Rodriguez and S. Wacholder (2007): “Human papillomavirus and cervical cancer,” Lancet, 370, 890–907.10.1016/S0140-6736(07)61416-0Suche in Google Scholar PubMed

Stefanski, L. A. and D. D. Boos (2002): “The calculus of M-estimation,” Am. Stat., 56, 29–38.10.1198/000313002753631330Suche in Google Scholar

Storey, J. D. and R. Tibshirani (2003): “Statistical significance for genomewide studies,” Proc. Natl. Acad. Sci., 100, 9440–9445.10.1073/pnas.1530509100Suche in Google Scholar PubMed PubMed Central

Weinberg, C. R. and S. Wacholder (1993): “Prospective analysis of case-control data under general multiplicative-intercept risk models,” Biometrika, 80, 461–465.10.1093/biomet/80.2.461Suche in Google Scholar

Wellcome Trust Case Control Consortium (2007): “Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls,” Nature, 447, 661.10.1038/nature05911Suche in Google Scholar PubMed PubMed Central

Zhang, W. and Q. Li (2016): “Incorporating Hardy-Weinberg equilibrium law to enhance the association strength for ordinal trait genetic study,” Ann. Hum. Genet., 80, 102–112.10.1111/ahg.12142Suche in Google Scholar PubMed

Zhang, W., Z. Zhang, X. Li and Q. Li (2015): “Fitting proportional odds model to case-control data with incorporating Hardy-Weinberg equilibrium,” Sci. Rep., 5, 17286.10.1038/srep17286Suche in Google Scholar PubMed PubMed Central

Published Online: 2019-01-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/sagmb-2017-0066/html
Button zum nach oben scrollen