Startseite Lebenswissenschaften When is Menzerath-Altmann law mathematically trivial? A new approach
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

When is Menzerath-Altmann law mathematically trivial? A new approach

  • Ramon Ferrer-i-Cancho EMAIL logo , Antoni Hernández-Fernández , Jaume Baixeries , Łukasz Dębowski und Ján Mačutek
Veröffentlicht/Copyright: 2. Dezember 2014

Abstract

Menzerath’s law, the tendency of Z (the mean size of the parts) to decrease as X (the number of parts) increases, is found in language, music and genomes. Recently, it has been argued that the presence of the law in genomes is an inevitable consequence of the fact that Z=Y/X, which would imply that Z scales with X as Z∼1/X. That scaling is a very particular case of Menzerath-Altmann law that has been rejected by means of a correlation test between X and Y in genomes, being X the number of chromosomes of a species, Y its genome size in bases and Z the mean chromosome size. Here we review the statistical foundations of that test and consider three non-parametric tests based upon different correlation metrics and one parametric test to evaluate if Z∼1/X in genomes. The most powerful test is a new non-parametric one based upon the correlation ratio, which is able to reject Z∼1/X in nine out of 11 taxonomic groups and detect a borderline group. Rather than a fact, Z∼1/X is a baseline that real genomes do not meet. The view of Menzerath-Altmann law as inevitable is seriously flawed.


Corresponding author: Ramon Ferrer-i-Cancho, Complexity and Quantitative Linguistics Lab, LARCA Research Group, Departament de Ciències de la Computació, Universitat Politècnica de Catalunya, Campus Nord, Edifici Omega, Jordi Girona Salgado 1-3, 08034 Barcelona (Catalonia), Spain, e-mail:

Acknowledgments

This article has benefited enormously from the comments of anonymous reviewers. We are grateful to P. Delicado, R. Gavaldà and E. Pons for their valuable mathematical insights. We owe the counterexample showing that uncorrelation does not imply mean independence to P. Delicado. We are also grateful to G. Bel-Enguix and N. Forns for helpful discussions. This work was supported by the grant Iniciació i reincorporació a la recerca from the Universitat Politècnica de Catalunya, the grants BASMATI (TIN2011-27479-C04-03) and OpenMT-2 (TIN2009-14675-C03) from the Spanish Ministry of Science and Innovation and the grant 2/0038/12 from the VEGA funding agency (JM).

References

Altmann, G. (1980): “Prolegomena to Menzerath’s law,” Glottometrika 2, 1–10.Suche in Google Scholar

Baixeries, J., A. Hernández-Fernández and R. Ferrer-i-Cancho (2012): “Random models of Menzerath-Altmann law in genomes,” Biosystems, 107, 167–173.10.1016/j.biosystems.2011.11.010Suche in Google Scholar PubMed

Baixeries, J., A. Hernández-Fernández, N. Forns and R. Ferrer-i-Cancho (2013): “The parameters of Menzerath-Altmann law in genomes,” J. Quant. Linguistics, 20, 94–104.Suche in Google Scholar

Boroda, M. G. and G. Altmann (1991): “Menzerath’s law in musical texts,” Musikometrika, 3, 1–13.Suche in Google Scholar

Cameron, A. C. and P. K. Trivedi (2009): Microeconometrics: methods and applications, Cambridge: Cambridge University Press.Suche in Google Scholar

Conover, W. J. (1999): Practical nonparametric statistics, New York: Wiley, 3rd edition.Suche in Google Scholar

Cramer, I. M. (2005): “The parameters of the Altmann-Menzerath law,” J. Quant. Linguistics, 12, 41–52.Suche in Google Scholar

Crathorne, A. R. (1922): “Calculation of the correlation ratio,” J. Am. Stat. Assoc., 18, 394–396.Suche in Google Scholar

DeGroot, M. H. and M. J. Schervish (2012): Probability and statistics, Boston: Wiley, 4th edition.Suche in Google Scholar

Dunn, M., S. J. Greenhill, S. C. Levinson and R. D. Gray (2011): “Evolved structure of language shows lineage-specific trends in word-order universals,” Nature, 473, 79–82.10.1038/nature09923Suche in Google Scholar PubMed

Ferrer-i-Cancho, R. and N. Forns (2009): “The self-organization of genomes,” Complexity, 15, 34–36.10.1002/cplx.20296Suche in Google Scholar

Ferrer-i-Cancho, R., J. Baixeries, and A. Hernández-Fernández (2013a): “Erratum to ‘Random models of Menzerath-Altmann law in genomes’ (BioSystems 107 (3), 167–173),” Biosystems, 111, 216–217.10.1016/j.biosystems.2013.01.004Suche in Google Scholar

Ferrer-i-Cancho, R., N. Forns, A. Hernández-Fernández, G. Bel-Enguix and J. Baixeries (2013b): “The challenges of statistical patterns of language: the case of Menzerath’s law in genomes,” Complexity, 18, 11–17.10.1002/cplx.21429Suche in Google Scholar

Hernández-Fernández, A., J. Baixeries, N. Forns and R. Ferrer-i-Cancho (2011): “Size of the whole versus number of parts in genomes,” Entropy, 13, 1465–1480.10.3390/e13081465Suche in Google Scholar

Khanin, R. and E. Wit (2006): “How scale-free are biological networks,” J. Comput. Biol., 13, 810–818.Suche in Google Scholar

Kolmogorov, A. N. (1956): Foundations of the theory of probability, New York: Chelsea Publishing Company, 2nd edition.Suche in Google Scholar

Kruskal, W. H. (1958): “Ordinal measures of association,” J. Am. Stat. Assoc., 53, 814–861.Suche in Google Scholar

Li, W. (1992): “Random texts exhibit Zipf’s-law-like word frequency distribution,” IEEE T. Inform. Theory, 38, 1842–1845.Suche in Google Scholar

Li, W. (2012): “Menzerath’s law at the gene-exon level in the human genome,” Complexity, 17, 49–53.10.1002/cplx.20398Suche in Google Scholar

May, R. M. and M. P. H. Stumpf (2000): “Species-area relations in tropical forests,” Science, 290, 2084–2086.10.1126/science.290.5499.2084Suche in Google Scholar PubMed

McCowan, B., L. R. Doyle, J. M. Jenkins and S. F. Hanser (2005): “The appropriate use of Zipf’s law in animal communication studies,” Anim. Behav., 69, F1–F7.10.1016/j.anbehav.2004.09.002Suche in Google Scholar

Menzerath, P. (1954): Die Architektonik des deutschen Wortschatzes, Bonn: Dümmler.Suche in Google Scholar

Miller, G. A. (1968): Introduction. In: The psycho-biology of language: an introduction to dynamic psychology (by G. K. Zipf), Cambridge, MA, USA: MIT Press, v–x.Suche in Google Scholar

Miller, G. A. and N. Chomsky (1963): Finitary models of language users. In: Luce, R. D., Bush, R., and Galanter, E. (Eds.), Handbook of mathematical psychology, volume 2, New York: Wiley, 419–491.Suche in Google Scholar

Poirier, D. J. (1995): Intermediate statistics and econometrics: a comparative approach, Cambridge: MIT Press.Suche in Google Scholar

Ritz, C. and J. C. Streibig (2008): Nonlinear regression with R, New York: Springer.10.1007/978-0-387-09616-2Suche in Google Scholar

Sokal, R. R. and F. J. Rohlf (1995): Biometry. The principles and practice of statistics in biological research, New York: W. H. Freeman and Co., 3rd edition.Suche in Google Scholar

Solé, R. V. (2010): “Genome size, self-organization and DNA’s dark matter,” Complexity, 16, 20–23.10.1002/cplx.20326Suche in Google Scholar

Stumpf, M. P. H. and P. J. Ingram (2005): “Probability models for degree distributions of protein interaction networks,” Europhys. Lett., 71, 152.Suche in Google Scholar

Stumpf, M. P. H. and M. A. Porter (2012): “Critical truths about power laws,” Science, 335, 665–666.10.1126/science.1216142Suche in Google Scholar PubMed

Stumpf, M., P. Ingram, I. Nouvel and C. Wiuf (2005): “Statistical model selection methods applied to biological network data,” Trans. Comp. Syst. Biol., 3, 65–77.Suche in Google Scholar

Suzuki, R., P. L. Tyack, and J. Buck (2005): “The use of Zipf’s law in animal communication analysis,” Anim. Behav., 69, 9–17.Suche in Google Scholar

Tanaka, R., T.-M. Yi and J. Doyle (2005): “Some protein interaction data do not exhibit power law statistics,” FEBS Letters, 579, 5140–5144.10.1016/j.febslet.2005.08.024Suche in Google Scholar PubMed

Teupenhayn, R. and G. Altmann (1984): “Clause length and Menzerath’s law,” Glottometrika, 6, 127–138.Suche in Google Scholar

Tjørve, E. (2003): “Shapes and functions of species-area curves: a review of possible models,” J. Biogeogr., 30, 823–832.Suche in Google Scholar

Wilde, J. and H. Schwibbe (1989): Organizationsformen von Erbinformation Im Hinblick auf die Menzerathsche Regel. In: Altmann, G. and Schwibbe, M. H. (Eds.), Das Menzerathsche Gesetz in informationsverarbeitenden Systemen, Hildesheim: Olms, 92–107.Suche in Google Scholar

Wooldridge, J. M. (2010): Econometric analysis of cross section and panel data, Cambridge: MIT Press.Suche in Google Scholar

Zou, K., K. Tuncali and S. G. Silverman (2003): “Correlation and simpler linear regression,” Radiology, 227, 617–628.10.1148/radiol.2273011499Suche in Google Scholar PubMed

Published Online: 2014-12-2
Published in Print: 2014-12-1

©2014 by De Gruyter

Heruntergeladen am 6.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/sagmb-2013-0034/html
Button zum nach oben scrollen