Startseite Quasi-(𝑚,𝑛)-paranormal operators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Quasi-(𝑚,𝑛)-paranormal operators

  • Baljinder Kour und Sonu Ram EMAIL logo
VerĂśffentlicht/Copyright: 12. Juni 2025
VerĂśffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we introduce the notion of quasi- ( m , n ) -paranormal operators on a Hilbert space and prove basic structural properties for the same class of operators. We also characterize these operators. We prove that if 𝑇 is quasi- ( m , n ) -paranormal, then the spectral mapping theorem holds, that is, f ⁢ ( w ⁢ ( T ) ) = w ⁢ ( f ⁢ ( T ) ) for every analytic function f ∈ H ⁢ ( σ ⁢ ( T ) ) . We also show more general results for operators in the class.

MSC 2020: 47A10; 47B20
  1. Communicated by: Nikolai Leonenko

References

[1] P. Aiena and O. Monsalve, Operators which do not have the single valued extension property, J. Math. Anal. Appl. 250 (2000), no. 2, 435–448. 10.1006/jmaa.2000.6966Suche in Google Scholar

[2] P. Aiena and F. Villafañe, Weyl’s theorems for some classes of operators, Integral Equations Operator Theory 53 (2005), no. 4, 453–466. 10.1007/s00020-003-1331-zSuche in Google Scholar

[3] T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 33 (1972), 169–178. Suche in Google Scholar

[4] S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111–114. 10.2307/2033783Suche in Google Scholar

[5] L. A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285–288. 10.1307/mmj/1031732778Suche in Google Scholar

[6] P. Dharmarha and S. Ram, ( m , n ) -paranormal operators and ( m , n ) ∗ -paranormal operators, Commun. Korean Math. Soc. 35 (2020), no. 1, 151–159. Suche in Google Scholar

[7] P. Dharmarha and S. Ram, A note on ( m , n ) ∗ -paranormal operators, Novi Sad J. Math. 51 (2021), no. 2, 17–26. 10.30755/NSJOM.10257Suche in Google Scholar

[8] P. Dharmarha and S. Ram, A note on ( m , n ) -paranormal operators, Electron. J. Math. Anal. Appl. 9 (2021), no. 1, 274–283. Suche in Google Scholar

[9] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 17–32. 10.1007/BF02052728Suche in Google Scholar

[10] J. K. Han, H. Y. Lee and W. Y. Lee, Invertible completions of 2 × 2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (2000), no. 1, 119–123. 10.1090/S0002-9939-99-04965-5Suche in Google Scholar

[11] Y. M. Han, J. I. Lee and D. Wang, Riesz idempotent and Weyl’s theorem for 𝑤-hyponormal operators, Integral Equations Operator Theory 53 (2005), no. 1, 51–60. 10.1007/s00020-003-1313-1Suche in Google Scholar

[12] H. Heuser, Functional Analysis, Marcel Dekker, New York, 1982. Suche in Google Scholar

[13] I. H. Kim, On ( p , k ) -quasihyponormal operators, Math. Inequal. Appl. 7 (2004), no. 4, 629–638. 10.7153/mia-07-61Suche in Google Scholar

[14] J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3417–3424. 10.1090/S0002-9939-96-03449-1Suche in Google Scholar

[15] K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, London Math. Soc. Monogr. (N. S.) 20, Oxford University, New York, 2000. 10.1093/oso/9780198523819.001.0001Suche in Google Scholar

[16] K. Tanahashi and A. Uchiyama, A note on ∗-paranormal operators and related classes of operators, Bull. Korean Math. Soc. 51 (2014), no. 2, 357–371. 10.4134/BKMS.2014.51.2.357Suche in Google Scholar

[17] A. Uchiyama, Weyl’s theorem for class 𝐴 operators, Math. Inequal. Appl. 4 (2001), no. 1, 143–150. 10.7153/mia-04-11Suche in Google Scholar

[18] A. Uchiyama, On the isolated points of the spectrum of paranormal operators, Integral Equations Operator Theory 55 (2006), no. 1, 145–151. 10.1007/s00020-005-1386-0Suche in Google Scholar

[19] P. Vrbová, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23(98) (1973), 483–492. 10.21136/CMJ.1973.101189Suche in Google Scholar

[20] T. Yamazaki and M. Yanagida, A further generalization of paranormal operators, Sci. Math. 3 (2000), no. 1, 23–31. Suche in Google Scholar

[21] J. Yuan and Z. Gao, Spectrum of class w ⁢ F ⁢ ( p , r , q ) operators, J. Inequal. Appl. 2007 (2007), Article ID 27195. 10.1155/2007/27195Suche in Google Scholar

Received: 2024-10-24
Accepted: 2025-03-12
Published Online: 2025-06-12

Š 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rose-2025-2025/html
Button zum nach oben scrollen