Abstract
In this paper, we introduce the notion of quasi-
-
Communicated by: Nikolai Leonenko
References
[1] P. Aiena and O. Monsalve, Operators which do not have the single valued extension property, J. Math. Anal. Appl. 250 (2000), no. 2, 435â448. 10.1006/jmaa.2000.6966Suche in Google Scholar
[2] P. Aiena and F. VillafaĂąe, Weylâs theorems for some classes of operators, Integral Equations Operator Theory 53 (2005), no. 4, 453â466. 10.1007/s00020-003-1331-zSuche in Google Scholar
[3] T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 33 (1972), 169â178. Suche in Google Scholar
[4] S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111â114. 10.2307/2033783Suche in Google Scholar
[5] L. A. Coburn, Weylâs theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285â288. 10.1307/mmj/1031732778Suche in Google Scholar
[6]
P. Dharmarha and S. Ram,
[7]
P. Dharmarha and S. Ram,
A note on
[8]
P. Dharmarha and S. Ram,
A note on
[9] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 17â32. 10.1007/BF02052728Suche in Google Scholar
[10]
J. K. Han, H. Y. Lee and W. Y. Lee,
Invertible completions of
[11] Y. M. Han, J. I. Lee and D. Wang, Riesz idempotent and Weylâs theorem for đ¤-hyponormal operators, Integral Equations Operator Theory 53 (2005), no. 1, 51â60. 10.1007/s00020-003-1313-1Suche in Google Scholar
[12] H. Heuser, Functional Analysis, Marcel Dekker, New York, 1982. Suche in Google Scholar
[13]
I. H. Kim,
On
[14] J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3417â3424. 10.1090/S0002-9939-96-03449-1Suche in Google Scholar
[15] K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, London Math. Soc. Monogr. (N.âS.) 20, Oxford University, New York, 2000. 10.1093/oso/9780198523819.001.0001Suche in Google Scholar
[16] K. Tanahashi and A. Uchiyama, A note on â-paranormal operators and related classes of operators, Bull. Korean Math. Soc. 51 (2014), no. 2, 357â371. 10.4134/BKMS.2014.51.2.357Suche in Google Scholar
[17] A. Uchiyama, Weylâs theorem for class đ´ operators, Math. Inequal. Appl. 4 (2001), no. 1, 143â150. 10.7153/mia-04-11Suche in Google Scholar
[18] A. Uchiyama, On the isolated points of the spectrum of paranormal operators, Integral Equations Operator Theory 55 (2006), no. 1, 145â151. 10.1007/s00020-005-1386-0Suche in Google Scholar
[19] P. VrbovĂĄ, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23(98) (1973), 483â492. 10.21136/CMJ.1973.101189Suche in Google Scholar
[20] T. Yamazaki and M. Yanagida, A further generalization of paranormal operators, Sci. Math. 3 (2000), no. 1, 23â31. Suche in Google Scholar
[21]
J. Yuan and Z. Gao,
Spectrum of class
Š 2025 Walter de Gruyter GmbH, Berlin/Boston