Startseite Extended two-tailed Lindley distribution: An updated model based on the Lindley distribution
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Extended two-tailed Lindley distribution: An updated model based on the Lindley distribution

  • C. Satheesh Kumar EMAIL logo und Rosmi Jose
Veröffentlicht/Copyright: 1. Februar 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Here we study some important properties of the two-tailed Lindley distribution (TLD) and propose a location-scale extension of the TLD. Several properties of the extended TLD are also obtained and an attempt has been made for estimating its parameters by the method of maximum likelihood, along with brief discussion on the existence of the estimators. Further, the distribution is fitted to certain real life data sets for illustrating the utility of the model. A simulation study is carried out for assessing the performance of likelihood estimators of the parameters of the distribution.

MSC 2020: 60E05; 60E07; 62F10
  1. Communicated by: Anatoly F. Turbin

References

[1] M. M. E. Abd El-Monsef, W. A. Hassanein and N. M. Kilany, Erlang–Lindley distribution, Comm. Statist. Theory Methods 46 (2017), no. 19, 9494–9506. 10.1080/03610926.2016.1212069Suche in Google Scholar

[2] A. M. Abouammoh, A. M. Alshangiti and I. E. Ragab, A new generalized Lindley distribution, J. Stat. Comput. Simul. 85 (2015), no. 18, 3662–3678. 10.1080/00949655.2014.995101Suche in Google Scholar

[3] M. Ahsanullah, M. E. Ghitany and D. K. Al-Mutairi, Characterization of Lindley distribution by truncated moments, Comm. Statist. Theory Methods 46 (2017), no. 12, 6222–6227. 10.1080/03610926.2015.1124117Suche in Google Scholar

[4] A. V. Akkaya, Proximate analysis based multiple regression models for higher heating value estimation of low rank coals, Fuel Process. Technol. 90 (2009), 165–170. 10.1016/j.fuproc.2008.08.016Suche in Google Scholar

[5] K. V. P. Barco, J. Mazucheli and V. Janeiro, The inverse power Lindley distribution, Comm. Statist. Simulation Comput. 46 (2017), no. 8, 6308–6323. 10.1080/03610918.2016.1202274Suche in Google Scholar

[6] G. M. Cordeiro and A. J. Lemonte, The beta Laplace distribution, Statist. Probab. Lett. 81 (2011), 973–982. 10.1016/j.spl.2011.01.017Suche in Google Scholar

[7] M. El-Morshedy, M. S. Eliwa and H. Nagy, A new two-parameter exponentiated discrete Lindley distribution: Properties, estimation and applications, J. Appl. Stat. 47 (2020), no. 2, 354–375. 10.1080/02664763.2019.1638893Suche in Google Scholar PubMed PubMed Central

[8] L. Gan and J. Jiang, A test for global maximum, J. Amer. Statist. Assoc. 94 (1999), no. 447, 847–854. 10.1080/01621459.1999.10474189Suche in Google Scholar

[9] M. E. Ghitany, B. Atieh and S. Nadarajah, Lindley distribution and its application, Math. Comput. Simulation 78 (2008), no. 4, 493–506. 10.1016/j.matcom.2007.06.007Suche in Google Scholar

[10] Y. A. Iriarte and M. A. Rojas, Slashed power-Lindley distribution, Comm. Statist. Theory Methods 48 (2019), no. 7, 1709–1720. 10.1080/03610926.2018.1438626Suche in Google Scholar

[11] P. Johannesson, K. Podgórski and I. Rychlik, Laplace distribution models for road topography and roughness, Int. J. Vehicle Performance 3 (2017), 224–258. 10.1504/IJVP.2017.085032Suche in Google Scholar

[12] J. Jose, On some modelling problems of statistics, Ph.D. Thesis, Department of Statistics, University of Kerala, Thiruvananthapuram, 2021. Suche in Google Scholar

[13] J. Jose and Y. P. Thomas, A new bivariate distribution with extreme value type I and Burr type XII distributions as marginals, J. Kerala Statist. Assoc. 29 (2018), 1–24. Suche in Google Scholar

[14] S. Karuppusamy, V. Balakrishnan and K. Sadasivan, Modified one-parameter Lindley distribution and its applications, Int. J. Eng. Res. Appl. 8 (2018), 50–56. Suche in Google Scholar

[15] S. Kotz, T. J. Kozubowski and K. Podgórski, The Laplace Distribution and Generalizations, Birkhäuser, Boston, 2012. Suche in Google Scholar

[16] T. J. Kozubowski, K. Podgórski and I. Rychlik, Multivariate generalized Laplace distribution and related random fields, J. Multivariate Anal. 113 (2013), 59–72. 10.1016/j.jmva.2012.02.010Suche in Google Scholar

[17] C. S. Kumar and R. Jose, An alternative Laplace distribution, J. Statist. Res. 53 (2019), no. 2, 111–127. Suche in Google Scholar

[18] C. S. Kumar and R. Jose, An alternative Laplace distribution, J. Statist. Res. 53 (2019), no. 2, 111–127. 10.47302/jsr.2019530202Suche in Google Scholar

[19] C. S. Kumar and R. Jose, On double Lindley distribution and some of its properties, Amer. J. Math. Manag. Sci. 38 (2019), 23–43. 10.1080/01966324.2018.1480437Suche in Google Scholar

[20] D. V. Lindley, Fiducial distributions and Bayes’ theorem, J. Roy. Statist. Soc. Ser. B 20 (1958), 102–107. 10.1111/j.2517-6161.1958.tb00278.xSuche in Google Scholar

[21] R. Mahmoudvand, J. Faradmal, N. Abbasi and K. Lurz, A new modification of the classical Laplace distribution, J. Iran. Stat. Soc. (JIRSS) 14 (2015), no. 2, 93–117. Suche in Google Scholar

[22] M. Mesfioui and A. M. Abouammoh, On a multivariate Lindley distribution, Comm. Statist. Theory Methods 46 (2017), no. 16, 8027–8045. 10.1080/03610926.2016.1171355Suche in Google Scholar

[23] S. Nadarajah, H. S. Bakouch and R. Tahmasbi, A generalized Lindley distribution, Sankhya B 73 (2011), no. 2, 331–359. 10.1007/s13571-011-0025-9Suche in Google Scholar

[24] M. M. Nassar, The Kumaraswamy–Laplace distribution, Pak. J. Stat. Oper. Res. 12 (2016), no. 4, 609–624. 10.18187/pjsor.v12i4.1485Suche in Google Scholar

[25] S. Nedjar and H. Zeghdoudi, On gamma Lindley distribution: Properties and simulations, J. Comput. Appl. Math. 298 (2016), 167–174. 10.1016/j.cam.2015.11.047Suche in Google Scholar

[26] A. Rényi, On measures of entropy and information, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, University of California, Berkeley (1960), 547–561. Suche in Google Scholar

[27] M. Shaked and J. G. Shanthikumar, Stochastic Orders and Their Applications, Probab. Math. Statist., Academic Press, Boston, 1994. Suche in Google Scholar

[28] C. G. Small, J. Wang and Z. Yang, Eliminating multiple root problems in estimation, Statist. Sci. 15 (2000), no. 4, 313–341. 10.1214/ss/1009213001Suche in Google Scholar

[29] W. Song, W. Yao and Y. Xing, Robust mixture regression model fitting by Laplace distribution, Comput. Statist. Data Anal. 71 (2014), 128–137. 10.1016/j.csda.2013.06.022Suche in Google Scholar

[30] P. Y. Thomas and J. Jose, A new bivariate distribution with Rayleigh and Lindley distributions as marginals, J. Stat. Theory Pract. 14 (2020), no. 2, Paper No. 28. 10.1007/s42519-020-00093-9Suche in Google Scholar

[31] P. Y. Thomas and J. Jose, On Weibull–Burr impounded bivariate distribution, Jpn. J. Stat. Data Sci. 4 (2021), no. 1, 73–105. 10.1007/s42081-020-00085-wSuche in Google Scholar

[32] Y.-K. Tse, Nonlife Actuarial Models, Int. Ser. Actuar. Sci., Cambridge University, Cambridge, 2009. 10.1017/CBO9780511812156Suche in Google Scholar

[33] S. Weisberg, Applied Linear Regression, Wiley Ser. Probab. Stat., John Wiley & Sons, New York, 2005. 10.1002/0471704091Suche in Google Scholar

Received: 2023-11-20
Accepted: 2024-10-05
Published Online: 2025-02-01
Published in Print: 2025-06-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rose-2025-2005/html
Button zum nach oben scrollen