Startseite The estimator G 59 for the solutions of the regularized Kolmogorov--Wiener filter
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The estimator G 59 for the solutions of the regularized Kolmogorov--Wiener filter

  • Vyacheslav L. Girko EMAIL logo , B. V. Shevchuk und L. D. Shevchuk
Veröffentlicht/Copyright: 2. Oktober 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The limit theorem for the estimator G 59 for the regularized solution of the Kolmogorov–Wiener filter is proved.


Communicated by Anatoly F. Turbin


References

[1] V. L. Girko, Random Matrices, Kievskom Gosudarstvennom Universitete, Kiev, 1975. Suche in Google Scholar

[2] V. L. Girko, Statistical Analysis of Observations of Increasing Dimension, Kluwer Academic, Dordrecht, 1995. 10.1007/978-94-015-8567-5Suche in Google Scholar

[3] V. L. Girko, An Introduction to Statistical Analysis of Random Arrays, VSP, Utrecht, 1998. 10.1515/9783110916683Suche in Google Scholar

[4] V. L. Girko, Theory of Stochastic Canonical Equations. Vol. I and II, Kluwer Academic, Dordrecht, 2001. 10.1007/978-94-010-0989-8Suche in Google Scholar

[5] V. L. Girko, B. V. Shevchuk and L. D. Shevchuk, The estimators G 9 and G 10 for the solutions of the Kolmogorov–Wiener filter, Random Oper. Stoch. Equ. 30 (2022), no. 4, 295–300. 10.1515/rose-2022-2090Suche in Google Scholar

[6] V. L. Girko, The generalized canonical equations K 1 , K 7 , K 16 , K 27 , Random Oper. Stoch. Equ. 32 (2024), no. 1, 63–106. Suche in Google Scholar

Received: 2023-12-10
Accepted: 2024-03-04
Published Online: 2024-10-02
Published in Print: 2024-11-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rose-2024-2019/html
Button zum nach oben scrollen