Startseite The generalized canonical equations K 1, K 7, K 16, K 27. The REFORM method, the invariance principal method, the matrix expansion method and G-transform. The main stochastic canonical equations K 100,...,K 106 and the estimators G 55,...,G 58 of the MAGIC (Mathematical Analysis of General Invisible Components)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The generalized canonical equations K 1, K 7, K 16, K 27. The REFORM method, the invariance principal method, the matrix expansion method and G-transform. The main stochastic canonical equations K 100,...,K 106 and the estimators G 55,...,G 58 of the MAGIC (Mathematical Analysis of General Invisible Components)

  • Vyacheslav L. Girko EMAIL logo
Veröffentlicht/Copyright: 20. Februar 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The generalized version of the stochastic canonical equations K 1 , K 7 , K 16 and K 27 are founded under the generalized Lindeberg condition with the help of which the main MAGIC estimators G 55 , G 56 , G 57 , G 58 are found.

MSC 2020: 15A18; 60-XX; 65F15

Communicated by Yuri Kondratiev


References

[1] S. W. Dharmadhikari, V. Fabian and K. Jogdeo, Bounds on the moments of martingales, Ann. Math. Statist. 39 (1968), no. 5, 1719–1723. 10.1214/aoms/1177698154Suche in Google Scholar

[2] V. L. Girko, Random Matrices (in Russian), Izdatelskoe Ob’edinenie “Visctha Schkola” pri Kievskom Gosudarstvennom Universitete, Kiev, 1975. Suche in Google Scholar

[3] V. L. Girko, Statistical Analysis of Observations of Increasing Dimension, Kluwer Academic, Dordrecht, 1995. 10.1007/978-94-015-8567-5Suche in Google Scholar

[4] V. L. Girko, An Introduction to Statistical Analysis of Random Arrays, VSP, Utrecht, 1998. 10.1515/9783110916683Suche in Google Scholar

[5] V. L. Girko, Theory of Stochastic Canonical Equations. Vol. I and II, Kluwer Academic, Dordrecht, 2001. 10.1007/978-94-010-0989-8Suche in Google Scholar

[6] V. L. Girko, 30 years of General Statistical Analysis and canonical equation K 60 for Hermitian matrices ( A + B U C ) ( A + B U C ) * , where U is a random unitary matrix, Random Oper. Stoch. Equ. 23 (2015), no. 4, 235–260. 10.1515/rose-2014-0043Suche in Google Scholar

Received: 2022-06-10
Accepted: 2023-03-04
Published Online: 2024-02-20
Published in Print: 2024-03-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rose-2024-2001/html
Button zum nach oben scrollen