Abstract
In this paper, we show that the spectral mapping theorem holds for
References
[1] P. Aiena and O. Monsalve, Operators which do not have the single valued extension property, J. Math. Anal. Appl. 250 (2000), no. 2, 435–448. 10.1006/jmaa.2000.6966Suche in Google Scholar
[2] P. Aiena and F. Villafañe, Weyl’s theorems for some classes of operators, Integral Equations Operator Theory 53 (2005), no. 4, 453–466. 10.1007/s00020-003-1331-zSuche in Google Scholar
[3] S. C. Arora and J. K. Thukral, On a class of operators, Glas. Mat. Ser. III 21(41) (1986), no. 2, 381–386. Suche in Google Scholar
[4] S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111–114. 10.1090/S0002-9939-1962-0133690-8Suche in Google Scholar
[5]
P. Dharmarha and S. Ram,
[6]
P. Dharmarha and S. Ram,
A note on
[7] S. Djordjević, I. H. Jeon and E. Ko, Weyl’s theorem through local spectral theory, Glasg. Math. J. 44 (2002), 323–327. 10.1017/S0017089502020141Suche in Google Scholar
[8] B. P. Duggal, Polaroid operators satisfying Weyl’s theorem, Linear Algebra Appl. 414 (2006), no. 1, 271–277. 10.1016/j.laa.2005.10.002Suche in Google Scholar
[9] N. Dunford and J. T. Schwartz, Linear Operators. Part III: Spectral Operators, Pure Appl. Math. 7, Interscience, New York, 1971. Suche in Google Scholar
[10] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 17–32. 10.1007/BF02052728Suche in Google Scholar
[11]
J. K. Han, H. Y. Lee and W. Y. Lee,
Invertible completions of
[12] Y. M. Han, J. I. Lee and D. Wang, Riesz idempotent and Weyl’s theorem for w-hyponormal operators, Integral Equations Operator Theory 53 (2005), no. 1, 51–60. 10.1007/s00020-003-1313-1Suche in Google Scholar
[13] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Monogr. Textb. Pure. Appl. Math. 109, Marcel Dekker, New York, 1988. Suche in Google Scholar
[14] H. Heuser, Functional Analysis, Marcel Dekker, New York, 1982. Suche in Google Scholar
[15]
I. H. Kim,
On
[16] J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3417–3424. 10.1090/S0002-9939-96-03449-1Suche in Google Scholar
[17] C. S. Kubrusly and B. P. Duggal, A note on k-paranormal operators, Oper. Matrices 4 (2010), no. 2, 213–223. 10.7153/oam-04-10Suche in Google Scholar
[18] R. Lange and S. W. Wang, New Approaches in Spectral Decomposition, Contemp. Math. 128, American Mathematical Society, Providence, 1992. 10.1090/conm/128Suche in Google Scholar
[19] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323–336. 10.2140/pjm.1992.152.323Suche in Google Scholar
[20] K. B. Laursen, Essential spectra through local spectral theory, Proc. Amer. Math. Soc. 125 (1997), no. 5, 1425–1434. 10.1090/S0002-9939-97-03852-5Suche in Google Scholar
[21] K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, London Math. Soc. Monogr. (N. S.) 20, Clarendon Press, New York, 2000. 10.1093/oso/9780198523819.001.0001Suche in Google Scholar
[22] W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasg. Math. J. 38 (1996), no. 1, 61–64. 10.1017/S0017089500031268Suche in Google Scholar
[23] V. Rakočević, On the essential approximate point spectrum. II, Mat. Vesnik 36 (1984), no. 1, 89–97. Suche in Google Scholar
[24] V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasg. Math. J. 28 (1986), no. 2, 193–198. 10.1017/S0017089500006509Suche in Google Scholar
[25] M. Schechter, Principles of Functional Analysis, 2nd ed., Grad. Stud. Math. 36, American Mathematical Society, Providence, 2002. Suche in Google Scholar
[26]
K. Tanahashi and A. Uchiyama,
A note on
[27] A. Uchiyama, Weyl’s theorem for class A operators, Math. Inequal. Appl. 4 (2001), no. 1, 143–150. 10.7153/mia-04-11Suche in Google Scholar
[28] A. Uchiyama, On the isolated points of the spectrum of paranormal operators, Integral Equations Operator Theory 55 (2006), no. 1, 145–151. 10.1007/s00020-005-1386-0Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Stochastic fractional differential inclusion driven by fractional Brownian motion
- Riesz idempotent, spectral mapping theorem and Weyl's theorem for (m,n)*-paranormal operators
- On the local time of Gaussian and Lévy processes
- Trajectory fitting estimation for stochastic differential equations driven by fractional Brownian motion
- Existence and uniqueness for reflected BSDE with multivariate point process and right upper semicontinuous obstacle
- Existence results for some stochastic functional integrodifferential systems driven by Rosenblatt process
- Random differential hyperbolic equations of fractional order in Fréchet spaces
- On Ulam type of stability for stochastic integral equations with Volterra noise
Artikel in diesem Heft
- Frontmatter
- Stochastic fractional differential inclusion driven by fractional Brownian motion
- Riesz idempotent, spectral mapping theorem and Weyl's theorem for (m,n)*-paranormal operators
- On the local time of Gaussian and Lévy processes
- Trajectory fitting estimation for stochastic differential equations driven by fractional Brownian motion
- Existence and uniqueness for reflected BSDE with multivariate point process and right upper semicontinuous obstacle
- Existence results for some stochastic functional integrodifferential systems driven by Rosenblatt process
- Random differential hyperbolic equations of fractional order in Fréchet spaces
- On Ulam type of stability for stochastic integral equations with Volterra noise