Startseite Riesz idempotent, spectral mapping theorem and Weyl's theorem for (m,n)*-paranormal operators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Riesz idempotent, spectral mapping theorem and Weyl's theorem for (m,n)*-paranormal operators

  • Sonu Ram EMAIL logo und Preeti Dharmarha
Veröffentlicht/Copyright: 29. Juli 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we show that the spectral mapping theorem holds for ( m , n ) * -paranormal operators. We also exhibit the self-adjointness of the Riesz idempotent E λ of ( m , n ) * -paranormal operators concerning for each isolated point λ of σ ( T ) . Moreover, we show Weyl’s theorem for ( m , n ) * -paranormal operators and f ( T ) for every f ( σ ( T ) ) . Furthermore, we investigate the class of totally ( m , n ) * -paranormal operators and show that Weyl’s theorem holds for operators in this class.

MSC 2020: 47A10; 47A11

Communicated by Vyacheslav L. Girko


References

[1] P. Aiena and O. Monsalve, Operators which do not have the single valued extension property, J. Math. Anal. Appl. 250 (2000), no. 2, 435–448. 10.1006/jmaa.2000.6966Suche in Google Scholar

[2] P. Aiena and F. Villafañe, Weyl’s theorems for some classes of operators, Integral Equations Operator Theory 53 (2005), no. 4, 453–466. 10.1007/s00020-003-1331-zSuche in Google Scholar

[3] S. C. Arora and J. K. Thukral, On a class of operators, Glas. Mat. Ser. III 21(41) (1986), no. 2, 381–386. Suche in Google Scholar

[4] S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111–114. 10.1090/S0002-9939-1962-0133690-8Suche in Google Scholar

[5] P. Dharmarha and S. Ram, ( m , n ) -paranormal operators and ( m , n ) * -paranormal operators, Commun. Korean Math. Soc. 35 (2020), no. 1, 151–159. Suche in Google Scholar

[6] P. Dharmarha and S. Ram, A note on ( m , n ) -paranormal operators, Electron. J. Math. Anal. Appl. 9 (2021), no. 1, 274–283. Suche in Google Scholar

[7] S. Djordjević, I. H. Jeon and E. Ko, Weyl’s theorem through local spectral theory, Glasg. Math. J. 44 (2002), 323–327. 10.1017/S0017089502020141Suche in Google Scholar

[8] B. P. Duggal, Polaroid operators satisfying Weyl’s theorem, Linear Algebra Appl. 414 (2006), no. 1, 271–277. 10.1016/j.laa.2005.10.002Suche in Google Scholar

[9] N. Dunford and J. T. Schwartz, Linear Operators. Part III: Spectral Operators, Pure Appl. Math. 7, Interscience, New York, 1971. Suche in Google Scholar

[10] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 17–32. 10.1007/BF02052728Suche in Google Scholar

[11] J. K. Han, H. Y. Lee and W. Y. Lee, Invertible completions of 2 × 2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (2000), no. 1, 119–123. 10.1090/S0002-9939-99-04965-5Suche in Google Scholar

[12] Y. M. Han, J. I. Lee and D. Wang, Riesz idempotent and Weyl’s theorem for w-hyponormal operators, Integral Equations Operator Theory 53 (2005), no. 1, 51–60. 10.1007/s00020-003-1313-1Suche in Google Scholar

[13] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Monogr. Textb. Pure. Appl. Math. 109, Marcel Dekker, New York, 1988. Suche in Google Scholar

[14] H. Heuser, Functional Analysis, Marcel Dekker, New York, 1982. Suche in Google Scholar

[15] I. H. Kim, On ( p , k ) -quasihyponormal operators, Math. Inequal. Appl. 7 (2004), no. 4, 629–638. 10.7153/mia-07-61Suche in Google Scholar

[16] J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3417–3424. 10.1090/S0002-9939-96-03449-1Suche in Google Scholar

[17] C. S. Kubrusly and B. P. Duggal, A note on k-paranormal operators, Oper. Matrices 4 (2010), no. 2, 213–223. 10.7153/oam-04-10Suche in Google Scholar

[18] R. Lange and S. W. Wang, New Approaches in Spectral Decomposition, Contemp. Math. 128, American Mathematical Society, Providence, 1992. 10.1090/conm/128Suche in Google Scholar

[19] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323–336. 10.2140/pjm.1992.152.323Suche in Google Scholar

[20] K. B. Laursen, Essential spectra through local spectral theory, Proc. Amer. Math. Soc. 125 (1997), no. 5, 1425–1434. 10.1090/S0002-9939-97-03852-5Suche in Google Scholar

[21] K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, London Math. Soc. Monogr. (N. S.) 20, Clarendon Press, New York, 2000. 10.1093/oso/9780198523819.001.0001Suche in Google Scholar

[22] W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasg. Math. J. 38 (1996), no. 1, 61–64. 10.1017/S0017089500031268Suche in Google Scholar

[23] V. Rakočević, On the essential approximate point spectrum. II, Mat. Vesnik 36 (1984), no. 1, 89–97. Suche in Google Scholar

[24] V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasg. Math. J. 28 (1986), no. 2, 193–198. 10.1017/S0017089500006509Suche in Google Scholar

[25] M. Schechter, Principles of Functional Analysis, 2nd ed., Grad. Stud. Math. 36, American Mathematical Society, Providence, 2002. Suche in Google Scholar

[26] K. Tanahashi and A. Uchiyama, A note on -paranormal operators and related classes of operators, Bull. Korean Math. Soc. 51 (2014), no. 2, 357–371. 10.4134/BKMS.2014.51.2.357Suche in Google Scholar

[27] A. Uchiyama, Weyl’s theorem for class A operators, Math. Inequal. Appl. 4 (2001), no. 1, 143–150. 10.7153/mia-04-11Suche in Google Scholar

[28] A. Uchiyama, On the isolated points of the spectrum of paranormal operators, Integral Equations Operator Theory 55 (2006), no. 1, 145–151. 10.1007/s00020-005-1386-0Suche in Google Scholar

Received: 2022-04-25
Accepted: 2023-03-20
Published Online: 2023-07-29
Published in Print: 2023-12-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rose-2023-2016/html
Button zum nach oben scrollen