Startseite About classical solutions of the path-dependent heat equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

About classical solutions of the path-dependent heat equation

  • Cristina Di Girolami ORCID logo und Francesco Russo EMAIL logo
Veröffentlicht/Copyright: 5. Februar 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper investigates two existence theorems for the path-dependent heat equation, which is the Kolmogorov equation related to the window Brownian motion, considered as a C([-T,0])-valued process. We concentrate on two general existence results of its classical solutions related to different classes of terminal conditions: the first one is given by a cylindrical not necessarily smooth random variable, the second one is a smooth generic functional.

MSC 2010: 60H05; 60H30; 91G80

Communicated by Sergio Albeverio


Award Identifier / Grant number: UUFMBAZ-2017-000859

Funding statement: The second named author would like to thank the first one for the kind invitation in the framework of GNAMPA project (n. prot. UUFMBAZ-2017-000859 31-07-2017) financially supported by Istituto di Alta Matematica Francesco Severi.

A Appendix: Malliavin and Fréchet derivatives

We need some technical results concerning the link between Fréchet and Malliavin derivatives in a separable Banach space that, for the moment, we set to be equal to . We need to apply Malliavin calculus related to the Brownian motion. Let T>0 and t[0,T] be fixed. We recall that

(A.1)W¯x:-Wt+x-Wt,x[0,T-t].

So the Wiener space will be C([0,T-t]) with variable parameter in [0,T-t] and based on W¯. We consider the window Brownian element W¯T-t() with values in C([-(T-t),0]), defined as

W¯T-t(x)=Wt+T-t(x)-Wt=WT+x-Wt,x[-(T-t),0].

Lemma A.1.

Let G:C([-(T-t),0])R of class C1 be such that DG has polynomial growth. Let YD. Then G(σW¯T-t()) belongs to D1,2 and

(A.2)Drm(G(σW¯T-t())𝒴)=σ]r-(T-t),0](DdyG)(σW¯T-t())𝒴+G(σW¯T-t())Drm𝒴,r[0,T-t]a.e.

Proof.

The proof of this result needs some boring technicalities involving the approximation of a continuous function and its polygonal approximation. Formula (A.2) is stated in a particular case for instance in [13, Example 1.2.1]. ∎

A consequence of the previous lemma is the possibility of the differentiating

h=F(YTt,η),F:C([-T,0])

of class C1 Fréchet. We remark that YTt,η=Gη(σW¯T-t()), where Gη:C[-(T-t),0]C([-T,0]) is given by

Gη(γ)={η(x+T-t),x[-T,t-T[,η(0)+γ(T-t+x),x[t-T,0].

By Lemma A.1, if 𝒴𝔻,

(A.3)Dxm(h𝒴)=σ]x-T+t,0]Ddy(FGη)(σW¯T-t())𝒴+FGη(σW¯T-t())Dxm𝒴,x[0,T-t].

Remark A.2.

We remark that, for all γC([-T+t,0]), D(FGη)([-T+t,0]).

We have, for ζC([-T+t,0]),

Ddy(FGη)(γ)ζ(y)=[t-T,0]DdyF(Gη(γ))ζ(y).

So (A.3) gives, for x[0,T-t],

Dxm(h𝒴)=σ]x-T+t,0](DdyF)(Gη(σW¯T-t))𝒴+(FGη)(σW¯T-t())Dxm𝒴=σ]x-T+t,0](DdyF)(YTt,η)𝒴+F(YTt,η)Dxm𝒴.

At this point, we have proved the following.

Proposition A.3.

Let H:C([-T,0])R be of class C1-Fréchet with polynomial growth. Let YD. Then H(YTt,η)Y belongs to D1,2 and

Drm(H(YTt,η)𝒴)=σ]x-T+t,0](DdyH)(YTt,η)𝒴+F(YTt,η)Drm𝒴.

The previous proposition admits a generalization to the case when H:C([-T,0]) is replaced by a functional

C([-T,0])(^π^πC([-T,0])C([-T,0]))ntimes,n1.

Typically, an example will be DnH. We recall that

(^π^πC([-T,0])C([-T,0])ntimes)*

can be isomorphically identified with the space of n-multilinear continuous functionals on C([-T,0]). Proposition A.3 can be generalized as follows.

Proposition A.4.

Let H:C([-T,0])R of class Cn+1-Fréchet be such that Dn+1F has polynomial growth. Let

𝒴𝔻(^π^πC([0,T-t])C([0,T-t])n𝑡𝑖𝑚𝑒𝑠).

Then DnH(YTt,η),Y belongs to D1,2. Moreover, for a.e. r[0,T-t], we have

(A.4)Drm(DnH(YTt,η),𝒴)=σDn+1H(YTt,η),1]r-T+t,0]𝒴+DnH(YTt,η),Drm𝒴.

Remark A.5.

The function 1]r-T+t,0] can be considered as a test function ζ0. Indeed,

ζ0Dn+1H(YTt,η)(ζ0ζ1ζn)

for fixed ζ1,,ζnC([-T,0]) is a measure.

Proof.

Avoiding to state too abstract results, the proof of Proposition A.4 is based on a generalization of Lemma A.1 replacing the value space with the separable Banach space B, setting

B=^π^πC([-T,0])C([-T,0]).

Lemma A.6.

Let B be a separable Banach space. Let G:C([-T+t,0])B* be of class C1-Fréchet with polynomial growth. Let YD(B). Then G(W¯T-t())YD1,2(B) and

Dr(G(W¯T-t()),𝒴BB*)=DG(W¯T-t()),1]r-T+t,0]𝒴^πC([-T,0])B(^πC([-T,0])B)*+G(W¯T-t()),Drm𝒴

Remark A.7.

We remark the following.

  1. DG:C([-T+t,0])(^πC([-T,0])B)*.

  2. Proposition A.4 will be used for n=1,2,3.

  3. Drm𝒴B for almost all r.

Acknowledgements

The authors wish to thank the referee for the careful reading of the paper and the associated editor and the editor in chief as well.

References

[1] H. Cartan, Calcul différentiel, Hermann, Paris, 1967. Suche in Google Scholar

[2] A. Cosso, S. Federico, F. Gozzi, M. Rosestolato and N. Touzi, Path-dependent equations and viscosity solutions in infinite dimension, Ann. Probab. 46 (2018), no. 1, 126–174. 10.1214/17-AOP1181Suche in Google Scholar

[3] A. Cosso and F. Russo, Functional and Banach space stochastic calculi: Path-dependent Kolmogorov equations associated with the frame of a Brownian motion, Stochastics of Environmental and Financial Economics (Oslo 2014–2015), Springer Proc. Math. Stat. 138, Springer, Cham (2016), 27–80. 10.1007/978-3-319-23425-0_2Suche in Google Scholar

[4] A. Cosso and F. Russo, Functional Itô versus Banach space stochastic calculus and strict solutions of semilinear path-dependent equations, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 19 (2016), no. 4, Article ID 1650024. 10.1142/S0219025716500247Suche in Google Scholar

[5] A. Cosso and F. Russo, Strong-viscosity solutions: classical and path-dependent PDEs, Osaka J. Math. 56 (2019), no. 2, 323–373. Suche in Google Scholar

[6] C. Di Girolami and F. Russo, Infinite dimensional stochastic calculus via regularization and applications, preprint HAL-INRIA (2010), http://hal.archives-ouvertes.fr/inria-00473947/fr/. Suche in Google Scholar

[7] C. Di Girolami and F. Russo, Clark-Ocone type formula for non-semimartingales with finite quadratic variation, C. R. Math. Acad. Sci. Paris 349 (2011), no. 3–4, 209–214. 10.1016/j.crma.2010.11.032Suche in Google Scholar

[8] C. Di Girolami and F. Russo, Generalized covariation for Banach space valued processes, Itô formula and applications, Osaka J. Math. 51 (2014), no. 3, 729–783. 10.1007/s00184-013-0472-6Suche in Google Scholar

[9] B. Dupire, Functional Itô calculus, Bloomberg Portfolio Research Paper No. 2009-04-FRONTIERS, 2009, http://ssrn.com/abstract=1435551. 10.2139/ssrn.1435551Suche in Google Scholar

[10] F. Flandoli and G. Zanco, An infinite-dimensional approach to path-dependent Kolmogorov equations, Ann. Probab. 44 (2016), no. 4, 2643–2693. 10.1214/15-AOP1031Suche in Google Scholar

[11] H. Föllmer, C.-T. Wu and M. Yor, On weak Brownian motions of arbitrary order, Ann. Inst. H. Poincaré Probab. Stat. 36 (2000), no. 4, 447–487. 10.1016/S0246-0203(00)00133-3Suche in Google Scholar

[12] J. Neveu, Processus aléatoires gaussiens, Sémin. Math. Supér. 34, Université de Montréal, Montreal, 1968. Suche in Google Scholar

[13] D. Nualart, The Malliavin Calculus and Related Topics, 2nd ed., Probab. Appl. (N.  Y.), Springer, Berlin, 2006. Suche in Google Scholar

[14] S. Peng and F. Wang, BSDE, path-dependent PDE and nonlinear Feynman–Kac formula, Sci. China Math. 59 (2016), no. 1, 19–36. 10.1007/s11425-015-5086-1Suche in Google Scholar

[15] F. Russo and P. Vallois, Intégrales progressive, rétrograde et symétrique de processus non adaptés, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 8, 615–618. Suche in Google Scholar

[16] F. Russo and P. Vallois, Forward, backward and symmetric stochastic integration, Probab. Theory Related Fields 97 (1993), no. 3, 403–421. 10.1007/BF01195073Suche in Google Scholar

[17] F. Russo and P. Vallois, Elements of stochastic calculus via regularization, Séminaire de Probabilités XL, Lecture Notes in Math. 1899, Springer, Berlin (2007), 147–185. 10.1007/978-3-540-71189-6_7Suche in Google Scholar

[18] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Monogr. Math., Springer, London, 2002. 10.1007/978-1-4471-3903-4Suche in Google Scholar

Received: 2018-12-09
Accepted: 2019-04-30
Published Online: 2020-02-05
Published in Print: 2020-03-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rose-2020-2028/html
Button zum nach oben scrollen