Startseite 𝑉-law for random block matrices under the generalized Lindeberg condition
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

𝑉-law for random block matrices under the generalized Lindeberg condition

  • Vyacheslav L. Girko EMAIL logo
Veröffentlicht/Copyright: 22. August 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The V-law under generalized Lindeberg condition for the independent blocks of random matrices having double stochastic matrix of covariances and different expectations of their array is proven.

MSC 2010: 15A52; 45B85; 60F99

Communicated by Anatoly F. Turbin


References

[1] V. L. Girko, V- transform (in Russian), Dokl. AN USSR. Ser. A 5-6 (1982), no. 3. Suche in Google Scholar

[2] V. L. Girko, Theory of Random Determinants, Math. Appl. (Soviet Series) 45, Kluwer Academic, Dordrecht, 1990. 10.1007/978-94-009-1858-0Suche in Google Scholar

[3] V. L. Girko, The V-density of eigenvalues of nonsymmetric random matrices and rigorous proof of the strong circular law, Random Oper. Stoch. Equ. 5 (1997), no. 4, 371–406. 10.1515/rose.1997.5.4.371Suche in Google Scholar

[4] V. L. Girko, An Introduction to Statistical Analysis of Random Arrays, VSP, Utrecht, 1998. 10.1515/9783110916683Suche in Google Scholar

[5] V. L. Girko, Random block matrix density and SS-law, Random Oper. Stoch. Equ. 8 (2000), no. 2, 189–194. 10.1515/rose.2000.8.2.189Suche in Google Scholar

[6] V. L. Girko, Theory of Stochastic Canonical Equations. Vol. I and II, Math. Appl. 535, Kluwer Academic, Dordrecht, 2001. 10.1007/978-94-010-0989-8Suche in Google Scholar

[7] V. L. Girko, The circular law. Twenty years later. III, Random Oper. Stoch. Equ. 13 (2005), no. 1, 53–109. 10.1515/1569397053300946Suche in Google Scholar

[8] V. L. Girko, 35 years of the Inverse Tangent Law, Random Oper. Stoch. Equ. 19 (2011), no. 4, 299–312. 10.1515/ROSE.2011.017Suche in Google Scholar

[9] V. L. Girko, The circular law. Thirty year later, Random Oper. Stoch. Equ. 20 (2012), no. 2, 143–187. 10.1515/rose-2012-0007Suche in Google Scholar

[10] V. L. Girko, 30 years of general statistical analysis and canonical equation K60 for Hermitian matrices (A+BⁱUⁱC)ⁱ(A+BⁱUⁱC)*, where U is a random unitary matrix, Random Oper. Stoch. Equ. 23 (2015), no. 4, 235–260. 10.1515/rose-2014-0043Suche in Google Scholar

[11] V. L. Girko, From the first rigorous proof of the circular law in 1984 to the circular law for block random matrices under the generalized Lindeberg condition, Random Oper. Stoch. Equ. 26 (2018), no. 2, 89–116. 10.1515/rose-2018-0008Suche in Google Scholar

[12] V. L. Girko, Girko’s circular law: Let λ be eIgenvalues of a set of random n×n matrices. Then λ⁹n is uniformly distributed on the disk. CRC Concise Encyclopedia of Mathematics on CD-ROM, 1996-9. Suche in Google Scholar

Received: 2017-12-10
Accepted: 2018-04-04
Published Online: 2019-08-22
Published in Print: 2019-09-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rose-2019-2016/html?lang=de
Button zum nach oben scrollen