Startseite Fast decay of eigenfunction correlators in long-range continuous random alloys
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fast decay of eigenfunction correlators in long-range continuous random alloys

  • Victor Chulaevsky EMAIL logo
Veröffentlicht/Copyright: 30. Januar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We study random Anderson Hamiltonians in Euclidean spaces with a long-range particle-media interaction potential đ”Č⁹(r)=r-A. Improving earlier results, for any A>2⁹d, we establish spectral and strong dynamical localization with sub-exponential decay of eigenfunction correlators, both in the strong disorder regime and at low energies.

MSC 2010: 60H25; 37K55

Communicated by Stanislav Molchanov


Acknowledgements

It is a pleasure to thank GĂŒnter Stolz and Ivan Veselić for stimulating discussions of the long-range models. I also thank the team of the Isaac Newton Institute (Cambridge, UK) and the organizers of the program Periodic and Ergodic Spectral Problems (INI, 2015) for the warm hospitality and the opportunity to work in the unique atmosphere of the Institute, where a part of the present work has been completed.

References

[1] V. Chulaevsky, From fixed-energy localization analysis to dynamical localization: An elementary path, J. Stat. Phys. 154 (2014), no. 6, 1391–1429. 10.1007/s10955-014-0937-7Suche in Google Scholar

[2] V. Chulaevsky, Exponential scaling limit of the single-particle Anderson model via adaptive feedback scaling, J. Stat. Phys. 162 (2016), no. 3, 603–614. 10.1007/s10955-015-1438-zSuche in Google Scholar

[3] J.-M. Combes, P. D. Hislop and F. Klopp, An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators, Duke Math. J. 140 (2007), no. 3, 469–498. 10.1215/S0012-7094-07-14032-8Suche in Google Scholar

[4] J. M. Combes and L. Thomas, Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators, Comm. Math. Phys. 34 (1973), 251–270. 10.1007/BF01646473Suche in Google Scholar

[5] D. Damanik and P. Stollmann, Multi-scale analysis implies strong dynamical localization, Geom. Funct. Anal. 11 (2001), no. 1, 11–29. 10.1007/PL00001666Suche in Google Scholar

[6] A. Elgart, M. Tautenhahn and I. Veselić, Localization via fractional moments for models on â„€ with single-site potentials of finite support, J. Phys. A 43 (2010), no. 47, Article ID 474021. Suche in Google Scholar

[7] J. Fröhlich, F. Martinelli, E. Scoppola and T. Spencer, Constructive proof of localization in the Anderson tight binding model, Comm. Math. Phys. 101 (1985), no. 1, 21–46. 10.1007/BF01212355Suche in Google Scholar

[8] F. Germinet and A. Klein, Bootstrap multiscale analysis and localization in random media, Comm. Math. Phys. 222 (2001), no. 2, 415–448. 10.1007/s002200100518Suche in Google Scholar

[9] W. Kirsch, An invitation to random Schrödinger operators, Random Schrödinger Operators, Panor. SynthĂšses 25, Soc. Math. France, Paris (2008), 1–119. Suche in Google Scholar

[10] W. Kirsch, P. Stollmann and G. Stolz, Anderson localization for random Schrödinger operators with long range interactions, Comm. Math. Phys. 195 (1998), no. 3, 495–507. 10.1007/s002200050399Suche in Google Scholar

[11] I. M. Lifshitz, Energy spectrum structure and quantum states of disordered condensed systems, Soviet Phys. Uspekhi 7 (1965), 549–573. 10.1070/PU1965v007n04ABEH003634Suche in Google Scholar

[12] B. Simon and T. Wolff, Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians, Comm. Pure Appl. Math. 39 (1986), no. 1, 75–90. 10.1002/cpa.3160390105Suche in Google Scholar

[13] P. Stollmann, Wegner estimates and localization for continuum Anderson models with some singular distributions, Arch. Math. (Basel) 75 (2000), no. 4, 307–311. 10.1007/s000130050508Suche in Google Scholar

[14] P. Stollmann, Caught by Disorder, Prog. Math. Phys. 20, BirkhÀuser, Boston, 2001. 10.1007/978-1-4612-0169-4Suche in Google Scholar

[15] H. von Dreifus and A. Klein, A new proof of localization in the Anderson tight binding model, Comm. Math. Phys. 124 (1989), no. 2, 285–299. 10.1007/BF01219198Suche in Google Scholar

[16] H. von Dreifus and A. Klein, Localization for random Schrödinger operators with correlated potentials, Comm. Math. Phys. 140 (1991), no. 1, 133–147. 10.1007/BF02099294Suche in Google Scholar

[17] F. Wegner, Bounds on the density of states in disordered systems, Z. Phys. B 44 (1981), no. 1–2, 9–15. 10.1007/BF01292646Suche in Google Scholar

Received: 2018-03-15
Accepted: 2018-10-16
Published Online: 2019-01-30
Published in Print: 2019-03-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rose-2019-2004/html
Button zum nach oben scrollen