Startseite Stabilization of a class of semilinear degenerate parabolic equations by Ito noise
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Stabilization of a class of semilinear degenerate parabolic equations by Ito noise

  • Cung The Anh EMAIL logo und Nguyen Van Thanh
Veröffentlicht/Copyright: 27. Juli 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We investigate the effect of Ito noise on the stability of stationary solutions to a class of semilinear degenerate parabolic equations with the nonlinearity satisfying an arbitrary polynomial growth condition. We will show that an Ito noise of sufficient intensity will stabilize the unstable stationary solution.

MSC 2010: 60H15; 35B35; 35K65

Communicated by Vyacheslav Girko


Funding statement: This work was supported by Vietnam Ministry of Education and Training under grant number B2015-17-70.

Acknowledgements

The authors would like to thank the reviewer for the helpful comments and suggestions which improved the presentation of the paper.

References

[1] Anh C. T., Bao T. Q. and Thanh N. V., Regularity of random attractors for stochastic semilinear degenerate parabolic equations, Electron. J. Differential Equations 2012 (2012), Paper No. 207. Suche in Google Scholar

[2] Anh C. T., Binh N. D. and Thuy L. T., On the global attractors for a class of semilinear degenerate parabolic equations, Ann. Polon. Math. 98 (2010), 71–89. 10.4064/ap98-1-5Suche in Google Scholar

[3] Arnold L., Crauel H. and Wihstutz V., Stabilization of linear systems by noise, SIAM J. Control Optim. 21 (1983), 451–461. 10.1137/0321027Suche in Google Scholar

[4] Caldiroli P. and Musina R., On a variational degenerate elliptic problem, Nonlinear Diff. Equ. Appl. 7 (2000), 187–199. 10.1007/s000300050004Suche in Google Scholar

[5] Caraballo T., Crauel H., Langa J. A. and Robinson J. C., The effect of noise on the Chafee–Infante equation: A nonlinear case study, Proc. Amer. Math. Soc. 135 (2007), 373–382. 10.1090/S0002-9939-06-08593-5Suche in Google Scholar

[6] Caraballo T. and Kloeden P. E., Stabilization of evolution equations by noise, Recent Development in Stochastic Dynamics and Stochastic Analysis, Interdiscip. Math. Sci. 8, World Scientific, Hackensack (2010), 43–66. 10.1142/9789814277266_0003Suche in Google Scholar

[7] Caraballo T., Langa J. A. and Robinson J. C., Stability and random attractors for a reaction-diffusion equation with multiplicative noise, Discrete Contin. Dyn. Syst. 6 (2000), 875–892. 10.3934/dcds.2000.6.875Suche in Google Scholar

[8] Caraballo T., Liu K. and Mao X., On stabilization of partial differential equations by noise, Nagoya Math. J. 161 (2001), 155–170. 10.1017/S0027763000022169Suche in Google Scholar

[9] Caraballo T. and Robinson J. C., Stabilisation of linear PDEs by Stratonovich noise, Systems Control Lett. 53 (2004), 41–50. 10.1016/j.sysconle.2004.02.020Suche in Google Scholar

[10] Cerrai S., Stabilization by noise for a class of stochastic reaction-diffusion equations, Probab. Theory Related Fields 133 (2005), 190–214. 10.1007/s00440-004-0421-4Suche in Google Scholar

[11] Da Prato G. and Zabczyk J., Stochastic Equations in Infinite Dimensions, 2nd ed., Encyclopedia Math. Appl. 152, Cambridge University Press, Cambridge, 2014. 10.1017/CBO9781107295513Suche in Google Scholar

[12] Dautray R. and Lions J. L., Mathematical Analysis and Numerical Methods for Science and Technology. Vol. I: Physical Origins and Classical Methods, Springer, Berlin, 1985. Suche in Google Scholar

[13] Gawarecki L. and Mandrekar V., Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Partial Differential Equations, Probab. Appl. (N. Y.), Springer, Heidelberg, 2011. 10.1007/978-3-642-16194-0Suche in Google Scholar

[14] Has’minskii R. Z., Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Netherlands, 1980. 10.1007/978-94-009-9121-7Suche in Google Scholar

[15] Karachalios N. I. and Zographopoulos N. B., On the dynamics of a degenerate parabolic equation: Global bifurcation of stationary states and convergence, Calc. Var. Partial Differential Equations 25 (2006), 361–393. 10.1007/s00526-005-0347-4Suche in Google Scholar

[16] Kwiecińska A., Stabilization of partial differential equations by noise, Stochastic Process. Appl. 79 (1999), 179–184. 10.1016/S0304-4149(98)00080-5Suche in Google Scholar

[17] Mandrekar V. and Rüdiger B., Stochastic Integration in Banach Spaces. Theory and Applications, Probab. Theory Stoch. Model. 73, Springer, Cham, 2015. 10.1007/978-3-319-12853-5Suche in Google Scholar

[18] Mao X. R., Stochastic stabilization and destabilization, Systems Control Lett. 23 (1994), 279–290. 10.1016/0167-6911(94)90050-7Suche in Google Scholar

[19] Lions J. L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, 1969. Suche in Google Scholar

[20] Liu K., On stability for a class of semilinear stochastic evolution equations, Stochastic Process. Appl. 70 (1997), 219–241. 10.1016/S0304-4149(97)00062-8Suche in Google Scholar

[21] Liu K., Stability of Infinite Dimensional Stochastic Differential Equations with Applications, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 135, Chapman & Hall/CRC, Boca Raton, 2006. Suche in Google Scholar

[22] Pardoux E., Équations aux Dérivées Partielles Stochastiques non Linéaire Monotones, Ph.D. thesis, University Paris XI, Paris, 1975. Suche in Google Scholar

[23] Scheutzow M., Stabilization and destabilization by noise in the plane, Stoch. Anal. Appl. 11 (1993), 97–113. 10.1080/07362999308809304Suche in Google Scholar

[24] Temam R., Navier–Stokes Equations: Theory and Numerical Analysis, 2nd ed., North-Holland, Amsterdam, 1979. 10.1115/1.3424338Suche in Google Scholar

[25] Yang M. and Kloeden P. E., Random attractors for stochastic semi-linear degenerate parabolic equations, Nonlinear Anal. Real World Appl. 12 (2011), 2811–2821. 10.1016/j.nonrwa.2011.04.007Suche in Google Scholar

[26] Yin J., Li Y. and Zhao H., Random attractors for stochastic semi-linear degenerate parabolic equations with additive noise in Lq, Appl. Math. Comput. 225 (2013), 526–540. 10.1016/j.amc.2013.09.051Suche in Google Scholar

[27] Zhao W. Q., Regularity of random attractors for a degenerate parabolic equations driven by additive noises, Appl. Math. Comput. 239 (2014), 358–374. 10.1016/j.amc.2014.04.106Suche in Google Scholar

Received: 2015-9-6
Accepted: 2016-6-14
Published Online: 2016-7-27
Published in Print: 2016-9-1

© 2016 by De Gruyter

Heruntergeladen am 27.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rose-2016-0011/html
Button zum nach oben scrollen