Startseite Mathematik Self-similar mechanism of thrombin generation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Self-similar mechanism of thrombin generation

  • Anna A. Andreeva , Aleksey I. Lobanov EMAIL logo , Sergey V. Panyukov und Anastasia A. Sibiryakova
Veröffentlicht/Copyright: 6. November 2025

Abstract

Self-similar solutions play an important role in the study of complex natural phenomena. In this work, self-similar regimes of the functioning of the blood coagulation system are studied. A review of the main mechanisms and theoretical models describing thrombin generation is presented. These models depend on a large number of kinetic coefficients, the estimation of which can present significant difficulties. We demonstrate that thrombin production is described by self-similar solutions that are controlled by only a small number of parameters, which can be measured experimentally. Analytical expressions for such solutions, including initial power-law regimes and blow up regime, are found using numerical methods for a reduced model describing the initial stage of thrombin generation. The self-similar regimes are also found in the analysis of experimental data.

MSC 2010: 34D05; 92-08; 65L07

Funding statement: The research was supported by the Russian Science Foundation (Project No. 25-23-00139).

References

[1] M. Anand, K. Rajagopal, and K. R. Rajagopal, A model for the formation, growth, and lysis of clots in quiescent plasma. A comparison between the effects of antithrombin III deficiency and protein C deficiency. Journal of Theoretical Biology 253 (2008), 725–738.10.1016/j.jtbi.2008.04.015Suche in Google Scholar PubMed

[2] A. A. Andreeva, M. Anand, A. I. Lobanov, A. V. Nikolaev, and M. A. Panteleev, Using extended ODE systems to investigate the mathematical model of the blood coagulation. Computer Research and Modeling 14 (2022), 931–951 (in Russian).10.20537/2076-7633-2022-14-4-931-951Suche in Google Scholar

[3] A. A. Andreeva, M. Anand, A. I. Lobanov, A. V. Nikolaev, M. A. Panteleev, and M. Susree, Mathematical modelling of platelet rich plasma clotting. Pointwise unified model. Russian Journal of Numerical Analysis and Mathematical Modelling 33 (2018), 265–276.10.1515/rnam-2018-0022Suche in Google Scholar

[4] C. P. P. Arceo, E. C. Jose, A. Marin-Sanguino, and E. R. Mendoza, Chemical reaction network approaches to biochemical systems theory. Mathematical Biosciences 269 (2015), 135–152.10.1016/j.mbs.2015.08.022Suche in Google Scholar PubMed

[5] G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics. Cambridge University Press, Cambridge, 1996.10.1017/CBO9781107050242Suche in Google Scholar

[6] A. Bouchnita, K. Terekhov, P. Nony, Y. Vassilevski, and V. Volpert, A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions. PLoS ONE 15(7) (2020), e0235392.10.1371/journal.pone.0235392Suche in Google Scholar PubMed PubMed Central

[7] K. E. Brummel-Ziedins, T. Orfeo, P. W. Callas, M. Gissel, K. G. Mann, and E. G. Bovill, The prothrombotic phenotypes in familial protein C deficiency are differentiated by computational modeling of thrombin generatio. PLoS One 7 (2012), e44378.10.1371/journal.pone.0044378Suche in Google Scholar PubMed PubMed Central

[8] S. D. Bungay, P. A. Gentry, and R. D. Gentry, A mathematical model of lipid-mediated thrombin generation. Mathematical Medicine and Biology: A Journal of the IMA 20 (2003), 105–129.10.1093/imammb20.1.105Suche in Google Scholar

[9] M. S. Chatterjee, W. S. Denney, H. Jing, and S. L. Diamond, Systems biology of coagulation initiation: kinetics of thrombin generation in resting and activated human blood. PLoS Computational Biology 6 (2010), e1000950.10.1371/journal.pcbi.1000950Suche in Google Scholar PubMed PubMed Central

[10] B. Dahlbäck and B. O. Villoutreix, Regulation of blood coagulation by the protein C anticoagulant pathway: novel insights into structure-function relationships and molecular recognition. Arteriosclerosis, Thrombosis, and Vascular biology 25 (2005), 1311–1320.10.1161/01.ATV.0000168421.13467.82Suche in Google Scholar PubMed

[11] C. M. Danforth, T. Orfeo, K. G. Mann, K. E. Brummel-Ziedins, and S. J. Everse, The impact of uncertainty in a blood coagulation model. Mathematical Medicine and Biology: A Journal of the IMA 26 (2009), 323–336.10.1093/imammb/dqp011Suche in Google Scholar PubMed PubMed Central

[12] P. Elizondo, and A. L. Fogelson, A mathematical model of venous thrombosis initiation. Biophysical Journal 111 (2016), 2722–2734.10.1016/j.bpj.2016.10.030Suche in Google Scholar PubMed PubMed Central

[13] T. Galochkina, M. Marion, and V. Volpert, Initiation of reaction-diffusion waves of blood coagulation. Physica D: Nonlinear Phenomena 376-377 (2018), 160–170.10.1016/j.physd.2017.11.006Suche in Google Scholar

[14] H. C. Hemker, R. Al Dieri, and S. Béguin, Thrombin generation assays: accruing clinical relevance. Current Opinion in Hematology 11 (2004), 170–175.10.1097/01.moh.0000130314.33410.d7Suche in Google Scholar PubMed

[15] H. C. Hemker, P. Giesen, R. Al Dieri, V. Regnault, E. de Smedta, R. Wagenvoord, T. Lecompte, and S. Béguin, Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiology of Haemostasis and Thrombosis 33 (2003), 4–15.10.1159/000071636Suche in Google Scholar PubMed

[16] S. Hofer, C. Ay, J. Rejtö, A. S. Wolberg, H. Haslacher, S. Koder, I. Pabinger, and J. Gebhart, Thrombin-generating potential, plasma clot formation, and clot lysis are impaired in patients with bleeding of unknown cause. Journal of Thrombosis and Haemostasis 17 (2019), 1478–1488.10.1111/jth.14529Suche in Google Scholar PubMed PubMed Central

[17] M. Hoffman and D. M. Monroe III, A cell-based model of hemostasis. Thrombosis and Haemostasis 85 (2001), 958–965.10.1055/s-0037-1615947Suche in Google Scholar

[18] M. F. Hockin, K. C. Jones, S. J. Everse, and K. G. Mann, A model for the stoichiometric regulation of blood coagulation. The Journal of Biological Chemistry 277 (2002), 18322–18333.10.1074/jbc.M201173200Suche in Google Scholar PubMed

[19] A. L. Kuharsky and A. L. Fogelson, Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophysical Journal 80 (2001), 1050–1074.10.1016/S0006-3495(01)76085-7Suche in Google Scholar PubMed PubMed Central

[20] H. H. S. Lakshmanan, A. Estonilo, S. E. Reitsma, A. R. Melrose, J. Subramanian, T. J. Zheng, J. Maddala, E. I. Tucker, D. Gailani, O. J. T. McCarty, P. L. Jurney, and C. Puy, Revised model of the tissue factor pathway of thrombin generation: role of the feedback activation of FXI. Journal of Thrombosis and Haemostasis 20 (2022), 1350–1363.10.1111/jth.15716Suche in Google Scholar PubMed PubMed Central

[21] J. H. Lawson, S. Butenas, and N. Ribarik, Complex-dependent inhibition of factor VIIa by an-tithrombin III and Heparin. Journal of Biological Chemistry 268 (1993), 767–770.10.1016/S0021-9258(18)53998-3Suche in Google Scholar

[22] K. G. Link, M. T. Stobb, M. G. Sorrells, M. Bortot, K. Ruegg, M. J. Manco-Johnson, J. A. Di Paola, S. S. Sindi, A. L. Fogelson, K. Leiderman, and K. B. Neeves, A mathematical model of coagulation under flow identifies factor V as a modifier of thrombin generation in hemophilia A. Journal of Thrombosis and Haemostasis 18 (2019), 306–317.10.1111/jth.14653Suche in Google Scholar PubMed PubMed Central

[23] K. G. Mann, Is there value in kinetic modeling of thrombin generation? Yes. Journal of Thrombosis and Haemostasis 10 (2012), 1463–1469.10.1111/j.1538-7836.2012.04799.xSuche in Google Scholar PubMed PubMed Central

[24] K. G. Mann, K. Brummel, and S. Butenas, What is all that thrombin for? Journal of Thrombosis and Haemostasis 1 (2003), 1504–1514.10.1046/j.1538-7836.2003.00298.xSuche in Google Scholar PubMed

[25] K. G. Mann, S. Butenas, and K. Brummel, The dynamics of thrombin formation. Arteriosclerosis, Thrombosis, and Vascular Biology 23 (2003), 17–25.10.1161/01.ATV.0000046238.23903.FCSuche in Google Scholar

[26] K. G. Mann, M. E. Nesheim, W. R. Church, P. Haley, and S. Krishnaswamy, Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood 76 (1990), 1–16.10.1182/blood.V76.1.1.1Suche in Google Scholar

[27] L. Muszbek, R. Adány, and H. Mikkola, Novel aspects of blood coagulation factor XIII. I. Structure, distribution, activation, and function. Critical Reviews in Clinical Laboratory Sciences 33 (1996), 357–421.10.3109/10408369609084691Suche in Google Scholar PubMed

[28] S. I. Obydennyy, A. N. Sveshnikova, F. I. Ataullakhanov, and M. A. Panteleev, Dynamics of calcium spiking, mitochondrial collapse and phosphatidylserine exposure in platelet subpopulations during activation. Journal of Thrombosis and Haemostasis 14 (2016), 1867–1881.10.1111/jth.13395Suche in Google Scholar PubMed

[29] J. A. Oliver, D. M. Monroe, H. R. Roberts, and M. Hoffman, Thrombin activates factor XI on activated platelets in the absence of factor XII. Arteriosclerosis, Thrombosis, and Vascular Biology 19 (1999), 170–177.10.1161/01.ATV.19.1.170Suche in Google Scholar

[30] T. Orfeo, S. Butenas, K. E. Brummel-Ziedins, and K. G. Mann, The tissue factor requirement in blood coagulation. The Journal of Biological Chemistry 280 (2005), 42887–42896.10.1074/jbc.M505506200Suche in Google Scholar PubMed PubMed Central

[31] M. J. Owen, J. R. Wright, E. G. D. Tuddenham, J. R. King, A. H. Goodall, and J. L. Dunster, Mathematical models of coagulation-are we there yet? Journal of Thrombosis and Haemostasis 22 (2024), 1689–1703.10.1016/j.jtha.2024.03.009Suche in Google Scholar PubMed

[32] M. A. Panteleev, A. N. Balandina, E. N. Lipets, M. V. Ovanesov, and F. I. Ataullakhanov, Task-oriented modular decomposition of biological networks: trigger mechanism in blood coagulation. Biophysical Journal 98 (2010), 1751–1761.10.1016/j.bpj.2010.01.027Suche in Google Scholar PubMed PubMed Central

[33] M. A. Panteleev, M. V. Ovanesov, D. A. Kireev, A. M. Shibeko, E. I. Sinauridze, N. M. Ananyeva, A. A. Butylin, E. L. Saenko, and F. I. Ataullakhanov, Spatial propagation and localization of blood coagulation are regulated by intrinsic and protein C pathways, respectively. Biophysical Journal 90 (2006), 1489–1500.10.1529/biophysj.105.069062Suche in Google Scholar PubMed PubMed Central

[34] S. V. Panyukov, Scaling theory of fibrin polymerization. Phys. Rev. E 110 (2024), L062501.10.1103/PhysRevE.110.L062501Suche in Google Scholar PubMed

[35] Y. Qian, G. Zhu, Z. Zhang, S. Modepalli, Y. Zheng, X. Zheng , G. Frydman, and H. Li, Coagulo-Net: Enhancing the mathematical modeling of blood coagulation using physics-informed neural networks. Neural Network 180 (2024), 106732.10.1016/j.neunet.2024.106732Suche in Google Scholar PubMed PubMed Central

[36] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics 378 (2019), 686–707.10.1016/j.jcp.2018.10.045Suche in Google Scholar

[37] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Blow-up in Quasilinear Parabolic Tquations. De Gruyter, Berlin, 1995.10.1515/9783110889864Suche in Google Scholar

[38] J. R. Shaw, T. James, J. Douxfils, Y. Dargaud, J. H. Levy, H. J. M. Brinkman, R. Shorr, D. Siegal, L. A. Castellucci, P. Gross, R. Khalife, C. Sperling, D. Page, D. Fergusson, and M. Carrier, Thrombin generation, bleeding and hemostasis in humans: Protocol for a scoping review of the literature. PloS One 18 (2023), e0293632.10.1371/journal.pone.0293632Suche in Google Scholar PubMed PubMed Central

[39] M. T. Stobb, K. B. Neeves, D. M. Monroe, S. S. Sindi, K. Leiderman, and A. L. Fogelson, Mathematical modeling identifies clotting factor combinations that modify thrombin generation in normal and factor VIII-, IX-, or XI-deficient blood. Research and Practice in Thrombosis and Haemostasis 8 (2024), 102570.10.1016/j.rpth.2024.102570Suche in Google Scholar PubMed PubMed Central

[40] M. Susree and M. Anand, A mathematical model for in vitro coagulation of blood: role of platelet count and inhibition. Sãdhanã 42 (2017), 291–305.10.1007/s12046-017-0602-3Suche in Google Scholar

[41] I. D. Tarandovskiy, S. S. Surov, L. A. Parunov, Y. Liang, W. Jankowski, Z. E. Sauna, and M. V. Ovanesov, Investigation of thrombin concentration at the time of clot formation in simultaneous thrombin and fibrin generation assays. Scientific Reports 14 (2024), 9225.10.1038/s41598-023-47694-5Suche in Google Scholar PubMed PubMed Central

[42] K. V. Tyurin and M. A. Khanin, Hemostasis as an optimal system. Mathematical Biosciences 204 (2006), 167–84.10.1016/j.mbs.2006.09.005Suche in Google Scholar PubMed

[43] C. van ’t Veer, N. J. Golden, and K. G. Mann, Inhibition of thrombin generation by the zymogen factor VII: implications for the treatment of hemophilia A by factor VIIa. Blood 95 (2000), 1330–1335.10.1182/blood.V95.4.1330.004k28_1330_1335Suche in Google Scholar

[44] A. S. Wolberg and R. A. Campbell, Thrombin generation, fibrin clot formation and hemostasis. Transfusion and Apheresis Science 38 (2008), 15–23.10.1016/j.transci.2007.12.005Suche in Google Scholar PubMed PubMed Central

[45] A. Yazdani, L. Lu, M. Raissi, and G. E. Karniadakis, Systems biology informed deep learning for inferring parameters and hidden dynamics. PLoS Computational Biology 16 (2020), e1007575.10.1371/journal.pcbi.1007575Suche in Google Scholar PubMed PubMed Central

[46] V. I. Zarnitsina, A. V. Pokhilko, and F. I. Ataullakhanov, A mathematical model for the spatiotemporal dynamics of intrinsic pathway of blood coagulation. I. The model description. Thrombosis Research 84 (1996), 225–236.10.1016/S0049-3848(96)00182-XSuche in Google Scholar

Received: 2025-07-27
Accepted: 2025-08-26
Published Online: 2025-11-06
Published in Print: 2025-11-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 15.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2025-0024/html?lang=de
Button zum nach oben scrollen