Startseite Mathematik Validation of the MGO regional climate model with a new parameterization of land surface processes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Validation of the MGO regional climate model with a new parameterization of land surface processes

  • Alexander V. Kozlov EMAIL logo , Igor M. Shkolnik und Tatiana V. Pavlova
Veröffentlicht/Copyright: 17. April 2025

Abstract

The validation of the Voeikov Main Geophysical Observatory (MGO) Regional Climate Model (RCM) is conducted using a new land surface model (LSM). A brief description of the new LSM is provided highlighting its differences from the previously used (control) version. The simulated climate variables obtained with the RCM are compared against observational data. Analysis of the results of simulations indicates that the new LSM enhances the accuracy of snow cover evolution, precipitation, and surface temperature calculations compared to the control version. The CaMa-Flood model is employed for river discharge calculations using RCM-simulated outputs as input data. The computed river discharge is evaluated against river gauge observations. The results demonstrate that the modified RCM provides more accurate river discharge estimates compared to those obtained with the control version.

MSC 2010: 86A10; 86A05

Funding statement: The work has been carried out as part of implementation of the most important innovative project of national importance ‘Unified National System for Monitoring of Climatically Active Substances’ (Agreement No. 169–15–2023–001 dated 01.03.2023 of the Federal Service for Hydrometeorology and Environmental Monitoring).

Acknowledgment

The authors thank Dr. Dai Yamazaki for providing of the CaMa-Flood version v4.20. The authors thank the reviewer for the valuable comments and suggestions for improving the paper.

References

1 G. Badgley, J. B. Fisher, C. Jiménez, K. P. Tu, and R. Vinukollu. On uncertainty in global terrestrial evapotranspiration estimates from choice of input forcing datasets. J. Hydrometeorology 16 (2015), No. 4, 1449–1455.10.1175/JHM-D-14-0040.1Suche in Google Scholar

2 G. Balsamo, A. Beljaars, K. Scipal, P. Viterbo, B. van den Hurk, M. Hirschi, and A. K. Betts, A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J. Hydrometeorology 10 (2009), No. 3, 623–643.10.1175/2008JHM1068.1Suche in Google Scholar

3 H. Beaudoing and M. Rodell, GLDAS Noah Land Surface Model L4 monthly 0.25 × 0.25 degree V2.0. https://disc.gsfc.nasa.gov/ 2019 (accessed: 18 November 2024).Suche in Google Scholar

4 A. Chernenkov, E. Volodin, S. Kostrykin, M. Tarasevich, and V. Bragina, Modification and validation of the soil-snow module in the INM RAS climate model. Atmosphere 15 (2024), 422.10.3390/atmos15040422Suche in Google Scholar

5 E. Coppola, F. Giorgi, G. Giuliani, E. Pichelli, J. Ciarlo, F. Raffaele, R. Nogherotto, M. Reboita, C. Lu, N. Zazulie, L. Vargas-Heinz, A. Andrade Cardoso, and J. Leeuw, The fifth generation regional climate modeling system, RegCM5: the first Convection-Permitting European wide simulation and validation over the CORDEX-CORE domains, October 2024. Preprint (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-5305206/v1].10.21203/rs.3.rs-5305206/v1Suche in Google Scholar

6 D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Royal Meteorological Soc. 137 (2011), No. 656, 553–597.10.1002/qj.828Suche in Google Scholar

7 Directive of the Government of the Russian Federation No. 3240-r dated October 29, 2022. Available at: https://government.ru/docs/46939/ (in Russian).Suche in Google Scholar

8 L. Dümenil and E Todini, A rainfall-runoff scheme for use in the Hamburg climate model. In: Advances in Theoretical Hydrology. Elsevier, 1992, pp. 129–157.10.1016/B978-0-444-89831-9.50016-8Suche in Google Scholar

9 E. Dutra, G. Balsamo, P. Viterbo, P. M. A. Miranda, A. Beljaars, C. Schär, and K. Elder, An improved snow scheme for the ECMWF land surface model: Description and offline validation. J. Hydrometeorology 1 (2010), No. 4, 899–916.10.1175/2010JHM1249.1Suche in Google Scholar

10 ECMWF. IFS documentation CY47R3 - Part IV, Physical Processes, 2021.Suche in Google Scholar

11 ECMWF, IFS documentation CY23R4 - Part IV (Ed. P. White), Physical Processes, 2003.Suche in Google Scholar

12 R. Elke, S. Hänsel, P. Finger, U. Schneider, and M. Ziese, GPCC Climatology Version 2022 at 0.25°: Monthly Land-Surface Precipitation Climatology for Every Month and the Total Year from Rain-Gauges built on GTS-based and Historical Data, 2022.Suche in Google Scholar

13 European Centre for Medium-Range Weather Forecasts. ERA5 Reanalysis (0.25 Degree Latitude-Longitude Grid), 2019.Suche in Google Scholar

14 R. Gelaro, W. McCarty, M. J. Suárez, R. Todling, A. Molod, L. Takacs, C. A. Randles, A. Darmenov, M. G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper, S. Akella, V. Buchard, A. Conaty, A. M. da Silva, W. Gu, Gi-Kong Kim, R. Koster, R. Lucchesi, D. Merkova, J. E. Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker, S. D. Schubert, M. Sienkiewicz, and B. Zhao, The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J. Climate 30 (2017), No. 14, 5419–5454.10.1175/JCLI-D-16-0758.1Suche in Google Scholar PubMed PubMed Central

15 G. Ghiggi, V. Humphrey, S. I. Seneviratne, and L. Gudmundsson, GRUN: an observation-based global gridded runoff dataset from 1902 to 2014. Earth System Science Data 11 (2019), No. 4, 1655–1674.10.5194/essd-11-1655-2019Suche in Google Scholar

16 The Global Runoff Data Centre (GRDC). https://grdc.bafg.de/ 2020 (accessed: 10 October 2024).Suche in Google Scholar

17 E. M. Gusev and O. N. Nasonova, Modeling Heat and Water Exchange between Land Surface and the Atmosphere. Nauka, Moscow, 2010 (in Russian).Suche in Google Scholar

18 I. Harris, T. J. Osborn, P. Jones, and D. Lister, Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data 7 (2020), No. 1, 109.10.1038/s41597-020-0453-3Suche in Google Scholar PubMed PubMed Central

19 H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, et al. The ERA5 global reanalysis. Quart. J. Royal Meteorological Soc. 146 (2020), No. 730, 1999–2049.10.1002/qj.3803Suche in Google Scholar

20 P. G. Jarvis, J. L. Monteith, and P. E. Weatherley, The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Royal Soc. London. B, Biological Sci. 273 (1976), No. 927. 593–610.10.1098/rstb.1976.0035Suche in Google Scholar

21 J. Jin, X. Gao, Z.-L. Yang, R. C. Bales, S. Sorooshian, R. E. Dickinson, S. F. Sun, and G. X. Wu, Comparative analyses of physically based snowmelt models for climate simulations. J. Climate 12 (1999), No. 8, 2643–2657.10.1175/1520-0442(1999)012<2643:CAOPBS>2.0.CO;2Suche in Google Scholar

22 O. Johansen, Thermal conductivity of soils. In: Measurements and Methods of Prediction. OECD, Symposium on Frost Action on Roads. Paris, 1973.Suche in Google Scholar

23 H. Kling, M. Fuchs, and M. Paulin. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrology 424-425 (2012), 264–277.10.1016/j.jhydrol.2012.01.011Suche in Google Scholar

24 S. Kobayashi, Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C. Kobayashi, H. Endo, K. Miyaoka, and K. Takahashi, The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Japan. Ser. II 93 (2015), No. 1, 5–48.10.2151/jmsj.2015-001Suche in Google Scholar

25 R. D. Koster and M. J. Suarez, Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Research: Atmospheres 97 (1992), No. D3, 2697–2715.10.1029/91JD01696Suche in Google Scholar

26 A. V. Kozlov, T. V. Pavlova, and I. M. Shkolnik, Improved scheme of land–atmosphere heat and moisture exchange for MGO regional climate models. Trudy GGO 613 (2024), 6–75.Suche in Google Scholar

27 G. Krinner, C. Derksen, R. Essery, M. Flanner, S. Hagemann, M. Clark, A. Hall, H. Rott, C. Brutel-Vuilmet, H. Kim, C. B. Ménard, L. Mudryk, C. Thackeray, L. Wang, G. Arduini, G. Balsamo, P. Bartlett, J. Boike, A. Boone, F. Chéruy, J. Colin, M. Cuntz, Y. Dai, B. Decharme, J. Derry, A. Ducharne, E. Dutra, X. Fang, C. Fierz, J. Ghattas, Y. Gusev, V. Haverd, A. Kontu, M. Lafaysse, R. Law, D. Lawrence, W. Li, T. Marke, D. Marks, M. Ménégoz, O. Nasonova, T. Nitta, M. Niwano, J. Pomeroy, M. S. Raleigh, G. Schaedler, V. Semenov, T. G. Smirnova, T. Stacke, U. Strasser, S. Svenson, D. Turkov, T. Wang, N. Wever, H. Yuan, W. Zhou, and D. Zhu, ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks. Geoscientific Model Development 11 (2018), No. 12, 5027–5049.10.5194/gmd-11-5027-2018Suche in Google Scholar

28 K. Luojus, J. Pulliainen, M. Takala, J. Lemmetyinen, and M. Moisander, GlobSnow v3.0 snow water equivalent (SWE), 2020.Suche in Google Scholar

29 V. P. Meleshko, V. A. Matyugin, P. W. Sporyshev, T. V. Pavlova, V. A. Govorkova, I. M. Shkolnik, and A. B. Baidin, MGO atmospheric general circulation model (MGO-03 T63L25 version). Trudy GGO 571 (2014), 5–87.Suche in Google Scholar

30 C. B. Menard, R. Essery, G. Krinner, G. Arduini, P. Bartlett, A. Boone, C. Brutel-Vuilmet, E. Burke, M. Cuntz, Y. Dai, B. Decharme, E. Dutra, X. Fang, C. Fierz, Y. Gusev, S. Hagemann, V. Haverd, H. Kim, M. Lafaysse, T. Marke, O. Nasonova, T. Nitta, M. Niwano, J. Pomeroy, G. Schädler, V. A. Semenov, T. Smirnova, U. Strasser, S. Swenson, D. Turkov, N. Wever, and H. Yuan, Scientific and human errors in a snow model intercomparison. Bull. American Meteorol. Soc. (2021) 102, No. 1, E61–E79.10.1175/BAMS-D-19-0329.1Suche in Google Scholar

31 Yu. G. Motovilov, L. Gottschalk, K. Engeland, and A. Belokurov, ECOMAG-regional model of hydrological cycle. Application to the NOPEX region. 1999.Suche in Google Scholar

32 G.-Y. Niu and Z.-L. Yang, An observation-based formulation of snow cover fraction and its evaluation over large north american river basins. J. Geophys. Research: Atmospheres 112 (2007), D21.10.1029/2007JD008674Suche in Google Scholar

33 A. J. Rutter, A. J. Morton, and P. C. Robins, A predictive model of rainfall interception in forests, II: Generalization of the model and comparison with observations in some coniferous and hardwood stands. J. Applied Ecology 12 (1975), No. 1, 367–380.10.2307/2401739Suche in Google Scholar

34 A. J. Rutter, K. A. Kershaw, P. C. Robins, and A. J. Morton. A predictive model of rainfall interception in forests, 1. derivation of the model from observations in a plantation of corsican pine. Agricultural Meteorology 9 (1971), 367–384.10.1016/0002-1571(71)90034-3Suche in Google Scholar

35 S. Saha, S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, D. Behringer, Y.-T. Hou, H. ya Chuang, M. Iredell, M. Ek, J. Meng, R. Yang, M. P. Mendez, H. van den Dool, Q. Zhang, W. Wang, M. Chen, and E. Becker, The NCEP climate forecast system version 2. J. Climate 27 (2014), No. 6, 2185–2208.10.1175/JCLI-D-12-00823.1Suche in Google Scholar

36 I. Shkolnik, T. Pavlova, S. Efimov, and S. Zhuravlev, Future changes in peak river flows across northern Eurasia as inferred from an ensemble of regional climate projections under the IPCC RCP8. 5 scenario. Climate Dynamics 50 (2018), 215–230.10.1007/s00382-017-3600-6Suche in Google Scholar

37 I. M. Shkolnik and S. V. Efimov, A new generation regional climate model for northern Eurasia. Trudy GGO 576 (2015).Suche in Google Scholar

38 I. M. Shkolnik, V. P. Meleshko, and T. V. Pavlova, Regional hydrodynamic atmospheric climate model for Russia. Russian Meteorology and Hydrology (2000), 11–24.Suche in Google Scholar

39 L. C. Slivinski, G. P. Compo, J. S. Whitaker, P. D. Sardeshmukh, B. S. Giese, C. McColl, R. Allan, X. Yin, R. Vose, H. Titchner, J. Kennedy, L. J. Spencer, L. Ashcroft, S. Brönnimann, M. Brunet, D. Camuffo, R. Cornes, T. A. Cram, R. Crouthamel, F. Domínguez-Castro, J. E. Freeman, J. Gergis, E. Hawkins, P. D. Jones, S. Jourdain, A. Kaplan, H. Kubota, F. L. Blancq, T.-C. Lee, A. Lorrey, J. Luterbacher, M. Maugeri, C. J. Mock, G. W. K. Moore, R. Przybylak, C. Pudmenzky, C. Reason, V. C. Slonosky, C. A. Smith, B. Tinz, B. Trewin, M. A. Valente, X. L. Wang, C. Wilkinson, K. Wood, and P. Wyszyński, Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quart. J. Royal Meteorol. Soc. (2019), 145, No. 724, 2876–2908.10.1002/qj.3598Suche in Google Scholar

40 V. M. Stepanenko, A. I. Medvedev, V. Yu. Bogomolov, S. K. Shangareeva, A. A. Ryazanova, G. M. Faykin, I. M. Ryzhova, V. I. Suiazova, A. V. Debolskiy, and A. Yu. Chernenkov, Land surface scheme TerM: the model formulation, code architecture and applications. Russ. J. Numer. Anal. Math. Modelling 39 (2024), No. 6, 363–377.10.1515/rnam-2024-0031Suche in Google Scholar

41 S. C. Swenson and D. M. Lawrence, A new fractional snow-covered area parameterization for the community land model and its effect on the surface energy balance. J. Geophys. Research: Atmospheres 117 (2012), D21.10.1029/2012JD018178Suche in Google Scholar

42 K. E. Taylor, Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Research: Atmospheres 106 (2001), D7, 7183–7192.10.1029/2000JD900719Suche in Google Scholar

43 S. Top, L. Kotova, L. De Cruz, S. Aniskevich, L. Bobylev, R. De Troch, N. Gnatiuk, A. Gobin, R. Hamdi, A. Kriegsmann, A. R. Remedio, A. Sakalli, H. Van De Vyver, B. Van Schaeybroeck, V. Zandersons, P. De Maeyer, P. Termonia, and S. Caluwaerts, Evaluation of regional climate models ALARO-0 and REMO2015 at 0.22° resolution over the CORDEX Central Asia domain. Geoscientific Model Development 14 (2021), No. 3, 1267–1293.10.5194/gmd-14-1267-2021Suche in Google Scholar

44 D. V. Turkov, E. D. Drozdov, and A. A. Lomakin, Albedo of snow cover and its parameterization for the purposes of modeling natural systems and climate. Ice and Snow 64 (2024), No. 3, 403–419.10.31857/S2076673424030079Suche in Google Scholar

45 M. Th. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America J. 44 (1980), No. 5, 892–898.10.2136/sssaj1980.03615995004400050002xSuche in Google Scholar

46 P. Viterbo, A. Beljaars, J.-F. Mahfouf, and J. Teixeira, The representation of soil moisture freezing and its impact on the stable boundary layer. ECMWF Technical Memoranda 255 (1998), No. 33Suche in Google Scholar

47 P. Viterbo and A. C. M. Beljaars, An improved land surface parameterization scheme in the ECMWF model and its validation. J. Climate 8 (1995), No. 11, 2716–2748.10.1175/1520-0442(1995)008<2716:AILSPS>2.0.CO;2Suche in Google Scholar

48 E. M. Volodin, E. V. Mortikov, and S. V. Kostrykin, Reproduction of the modern climate by the climate system model INMCM60. Izvestiya, Atmospheric and Oceanic Physics 59 (2023), No. 1, 27–40 (in Russian).10.1134/S0001433823010139Suche in Google Scholar

49 L. Xu, N. Chen, H. Moradkhani, X. Zhang, and C. Hu, Improving global monthly and daily precipitation estimation by fusing gauge observations, remote sensing, and reanalysis data sets. Water Resources Research 56 (2020), No. 3, e2019WR026444.10.1029/2019WR026444Suche in Google Scholar

50 D. Yamazaki, G. A. M. de Almeida, and P. D. Bates, Improving computational efficiency in global river models by implementing the local inertial flow equation and a vector-based river network map. Water Resources Research 49 (2013), No. 11, 7221–7235.10.1002/wrcr.20552Suche in Google Scholar

51 D. Yamazaki, S. Kanae, H. Kim, and T. Oki. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research 47 (2011), No. 4.10.1029/2010WR009726Suche in Google Scholar

52 D. Yamazaki, H. Lee, D. E. Alsdorf, E. Dutra, H. Kim, S. Kanae, and T. Oki, Analysis of the water level dynamics simulated by a global river model: A case study in the Amazon River. Water Resources Research 48 (2012), No. 9.10.1029/2012WR011869Suche in Google Scholar

53 D. Yamazaki, T. Sato, S. Kanae, Y. Hirabayashi, and P. D. Bates, Regional flood dynamics in a bifurcating mega delta simulated in a global river model. Geophysical Research Letters 41 (2014), No. 9, 3127–3135.10.1002/2014GL059744Suche in Google Scholar

Received: 2024-12-15
Revised: 2025-02-07
Accepted: 2025-02-12
Published Online: 2025-04-17
Published in Print: 2025-04-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 15.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2025-0009/html
Button zum nach oben scrollen