Computational framework for the Earth system modelling and the INM-CM6 climate model implemented on its base
-
Evgeny M. Volodin
, Dmitry V. Blagodatskikh , Vasilisa V. Bragina , Alexey Yu. Chernenkov , Ilya A. Chernov , Alisa A. Ezhkova , Rostislav Yu. Fadeev , Andrey S. Gritsun, Nikolay G. Iakovlev
, Sergey V. Kostrykin , Vladimir A. Onoprienko , Sergey S. Petrov , Maria A. Tarasevich and Ivan V. Tsybulin
Abstract
In this paper, we present the current stage of development of the INM-CM Earth system model family by the Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences. The major change from the previous model version INM-CM5 is a new computational platform for the Earth System modelling. We describe the main parts of this digital platform, such as ocean-atmosphere coupling, version control, compilation/configuration, and automated testing subsystems. We also discuss major modifications of the physical parts of the climate model whereby the model simulations of observed climate were significantly improved as well as the model computational performance.
Funding statement: Development of the computational framework for the Earth system modelling (Sections 1 and 2) was funded by the project ‘Supercomputer technologies for mathematical modelling of the Earth system’ (Agreement with the Ministry of Education and Science of the Russian Federation No. 075-03-2023-509/1).
Acknowledgment
The work was carried out within the framework of the RF federal programs ‘Problems of the environmental development of Russia and the climate changes’ and ‘National Monitoring System of climatically active substances’. All experiments were performed using the HPC system of the Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, the Roshydromet HPC Cray XC40 system and computing resources of the Joint Supercomputer Center of the Russian Academy of Sciences.
References
[1] S. Abhyankar, J. Brown, E. M. Constantinescu, D. Ghosh, B. F. Smith, and H. Zhan. PETSc/TS: A modern scalable ODE/DAE solver library. arXiv 1806.0143, 2018.Search in Google Scholar
[2] D. V. Blagodatskikh, V. A. Onoprienko, E. V. Mortikov, and N. G. Iakovlev, Comparative computational performance of two different techniques for calculation of the sea surface height in a climate ocean model. IOP Conf. Ser.: Earth Environ. Sci. (2022) 1023 012010.10.1088/1755-1315/1023/1/012010Search in Google Scholar
[3] D. V. Blagodatskikh, N. G. Iakovlev, E. M. Volodin, and A. S. Gritsun, Non-local discretization of the isoneutral diffusion operator in a terrain-following climate ocean model. Russian Journal of Numerical Analysis and Mathematical Modelling 38 (2023), No. 6, 353–360.10.1515/rnam-2023-0026Search in Google Scholar
[4] D. V. Blagodatskikh, Comparison of computational efficiency of two versions of a terrain-following ocean climate model. Numerical Methods and Programming 24 (2023), No. 4, 440–449.10.26089/NumMet.v24r430Search in Google Scholar
[5] S. Bouillon, T. Fichefet, V. Legat, and G. Madec, The elastic–viscous–plastic method revisited. Ocean Modelling 71 (2013), 2–12.10.1016/j.ocemod.2013.05.013Search in Google Scholar
[6] A. Bozzo, S. Remy, A. Benedetti, J. Flemming, P. Bechtold, M. J. Rodwell, and J.-J. Morcrette, Implementation of a CAMS-based aerosol climatology in the IFS. ECMWF Technical Memoranda (2017), 801.Search in Google Scholar
[7] A. Yu. Chernenkov et al., Modification and validation of the soil–snow module in the INM RAS climate model. Atmosphere 15 (2024), No. 4, 422.10.3390/atmos15040422Search in Google Scholar
[8] A. Yu. Chernenkov and E. M. Volodin, New land use parameterization for INM-CM terrestrial carbon cycle module. Numerical Methods and Programming 25 (2024), No. 3, 31500325.10.26089/NumMet.v25r324Search in Google Scholar
[9] A. Yu. Chernenkov et al., Nitrogen cycle module for INM RAS climate model. Russian Journal of Numerical Analysis and Mathematical Modelling 39 (2024), No. 4, 187–197.10.1515/rnam-2024-0018Search in Google Scholar
[10] V. Eyring, S. Bony, G. Meehl, et al., Overview of the coupled model intercomparison. Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development (2016), No. 9, 1937–1958.10.5194/gmd-9-1937-2016Search in Google Scholar
[11] E. M. Gaschuk, A. A. Ezhkova, V. A. Onoprienko, et al., Passive tracer transport in ocean modeling: Implementation on GPUs, efficiency and optimizations. Lobachevskii J. Math. 44 (2023), 3040–3058.10.1134/S1995080223080152Search in Google Scholar
[12] G. Crispi et al., Nutrients cycling in Mediterranean basins: The role of the biological pump in the trophic regime. Ecological Modelling 138 (2001), No. 1-3, 101–114.10.1016/S0304-3800(00)00396-3Search in Google Scholar
[13] A. V. Gusev and N. A. Diansky, Numerical simulation of the world ocean circulation and its climatic variability for 1948–2007 using the INMOM. Izv., Atmos. Ocean. Phys. 50 (2014), No. 1, 1–12.10.1134/S0001433813060078Search in Google Scholar
[14] Ch. Hill et al., The architecture of the earth system modeling framework. Computing in Science & Engineering 6.1 (2004), 18–28.10.1109/MCISE.2004.1255817Search in Google Scholar
[15] H. Hersbach et al., The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146 (2020), 1999–2049.10.1002/qj.3803Search in Google Scholar
[16] M. Hess, P. Koepke, and I. Schult, Optical properties of aerosols and clouds: The software package OPAC. Bull. of the Amer. Met. Soc. 79 (1998), No. 5, 831–844.10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2Search in Google Scholar
[17] M. Humphreys, GLODAPv2. 2022: the latest version of the global interior ocean biogeochemical data product. Earth System Science Data (2022), No. 12. 10.5194/essd-14-5543-2022.Search in Google Scholar
[18] E. C. Hunke and J. K. Dukowicz, An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr 27 (1997), 1849–1867.10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2Search in Google Scholar
[19] E. C. Hunke, W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. M. Elliott., CICE: the Los Alamos sea ice model. Documentation and Software, Version 5.0. Los Alamos National Laboratory Tech., 2013, Rep. LA-CC-06-012.Search in Google Scholar
[20] G. C. Hurtt et al., Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development 13 (2020), 5425–5464.10.5194/gmd-13-5425-2020Search in Google Scholar
[21] N. G. Iakovlev, E. M. Volodin, and A. S. Gritsun, Simulation of the spatiotemporal variability of the World Ocean sea surface height by the INM climate models. Izvestiya, Atmospheric and Oceanic Physics 52 (2016), No. 4, 376–385.10.1134/S0001433816040125Search in Google Scholar
[22] V. V. Kalmykov et al., Compact Modeling Framework v3.0 for high-resolution global ocean-ice-atmosphere models. Geoscientific Model Development 11 (2018), No. 10, 3983–3997.10.5194/gmd-11-3983-2018Search in Google Scholar
[23] S. A. Karabasov, P. S. Berloff, and V. M. Goloviznin, CABARET in the ocean gyres. Ocean Modelling 30 (2009), No. 2–3, 155–168.10.1016/j.ocemod.2009.06.009Search in Google Scholar
[24] M. Kimmritz, S. Danilov, and M. Losch, The adaptive EVP method for solving the sea ice momentum equation. Ocean Modelling 101 (2016), 59–67.10.1016/j.ocemod.2016.03.004Search in Google Scholar
[25] N. G. Loeb, D. R. Doelling, H. Wang, W. Su, C. Nguyen, J. G. Corbett, L. Liang, C. Mitrescu, F. G. Rose, and S. Kato, Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product J. Climate 31 (2018), 895–918.10.1175/JCLI-D-17-0208.1Search in Google Scholar
[26] M. Meybeck and A. Ragu, GEMS-GLORI world river discharge database [dataset]. Laboratoire de Géologie Appliquée, Université Pierre et Marie Curie, Paris, France, PANGAEA, 2012.Search in Google Scholar
[27] S. S. Petrov, V. K. Zyuzin, and N. G. Iakovlev, The new sea ice thermodynamics code for the INM RAS Earth system model: The design and comparison of one- and zero-dimensional approaches with the observational data. Russ. J. Numer. Anal. Math. Modelling 38 (2023), No. 1, 47–61.10.1515/rnam-2023-0005Search in Google Scholar
[28] L. A. Rieger, J. N. S. Cole, J. C. Fyfe, S. Po-Chedley, P. J. Cameron-Smith, P. J. Durack, N. P. Gillett, and Q. Tang, Quantifying CanESM5 and EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment. Geosci. Model Dev. 13 (2020), 4831–4843.10.5194/gmd-13-4831-2020Search in Google Scholar
[29] L. P. van Roekel, A. Adcroft, G. Danabasoglu, S. M. Griffies, B. Kauffman, W. G. Large, et al., The KPP boundary layer scheme for the ocean: Revisiting its formulation and benchmarking one-dimensional simulations relative to LES. Journal of Advances in Modeling Earth Systems 10 (2018), 2647–2685.10.1029/2018MS001336Search in Google Scholar
[30] M. Tarasevich et al., Scalability of the INM RAS Earth system model. In: Russian Supercomputing Days. Cham, Springer Nature, Switzerland, 2023, pp. 202–216.10.1007/978-3-031-49432-1_16Search in Google Scholar
[31] M. A. Tarasevich, I. V. Tsybulin, V. A. Onoprienko, D. V. Kulyamin, and E. M. Volodin, Ensemble-based statistical verification of INM RAS Earth system model. Russian Journal of Numerical Analysis and Mathematical Modelling 38 (2023), No. 3, 173–186.10.1515/rnam-2023-0014Search in Google Scholar
[32] L. W. Thomason, N. Ernest, L. Millán, L. Rieger, A. Bourassa, J.-P. Vernier, G. Manney, B. Luo, F. Arfeuille, and T. Peter, A global space-based stratospheric aerosol climatology: 1979–2016. Earth Syst. Sci. Data 10 (2018), 469–492.10.5194/essd-10-469-2018Search in Google Scholar
[33] M. Tiedtke, Representation of clouds in large-scale models. Mon. Weather Rev. 121 (1993), 3040–3061.10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2Search in Google Scholar
[34] S. Valcke, The OASIS3 coupler: a European climate modelling community software, Geosci. Model Dev. (2013), No. 6, 373–388.10.5194/gmd-6-373-2013Search in Google Scholar
[35] M. Vancoppenolle, T. Fichefet, H. Goosse, S. Bouillon, G. Madec, and M. A. Morales Maqueda, Simulating the mass balance and salinity of Arctic and Antarctic sea ice. Model description and validation. Ocean Modelling 27 (2009), No. 1–2, 33–53.10.1016/j.ocemod.2008.10.005Search in Google Scholar
[36] M. Vichi, T. Lovato, M. Butenschön, L. Tedesco, P. Lazzari, F. Cossarini, S. Masina, N. Pinardi, C. Solidoro, and M. Zavatarelli, The Biogeochemical Flux Model (BFM): Equation Description and User Manual. BFM version 5.3 (2023). BFM Report series No. 1, Release 1.3. Bologna, Italy, 2023.Search in Google Scholar
[37] E. Volodin and V. Lykossov, Parameterization of heat and moisture transfer in the soil-vegetation system for use in atmospheric general circulation models: 1. Formulation and simulations based on local observational data. Izvestiya, Atmospheric and Oceanic Physics 34 (1998), No. 4, 405–416.Search in Google Scholar
[38] E. M. Volodin, Atmosphere–ocean general circulation model with the carbon cycle. Izvestiya, Atmospheric and Oceanic Physics 43 (2007), No. 3, 266–280.10.1134/S0001433807030024Search in Google Scholar
[39] E. M. Volodin, V. Ya. Galin, A. S. Gritsun, et al. (Ed. N. G. Ialovlev), Mathematical Modeling of the Earth System. MAKS Press, Moscow, 2016 (in Russian).Search in Google Scholar
[40] E. V. Volodin and S. V. Kostrykin, The aerosol module in the INM RAS climate model. Russian Meteorology and Hydrology 41 (2016), No. 8, 519–528.10.3103/S106837391608001XSearch in Google Scholar
[41] E. M. Volodin, E. V. Mortikov, S. V. Kostrykin, V. Y. Galin, V. N. Lykossov, et al., Simulation of the present day climate with the climate model INMCM5. Clim. Dyn. 49 (2017), 3715–3734.10.1007/s00382-017-3539-7Search in Google Scholar
[42] E. Volodin, The mechanisms of cloudiness evolution responsible for equilibrium climate sensitivity in climate model INM-CM4-8. Geophysical Research Letters 48 (2021), e2021GL096204.10.1029/2021GL096204Search in Google Scholar
[43] E. M. Volodin, Simulation of present-day climate with the INMCM60 Model. Izvestiya Atmospheric and Oceanic Physics 59 (2023), No. 1, 16–22.10.1134/S0001433823010139Search in Google Scholar
[44] S. T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids. Journal of Computational Physics 31 (1979), No. 3, 335–362.10.1016/0021-9991(79)90051-2Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Simulation of modern and future climate by INM-CM6M
- Planetary boundary layer scheme in the INMCM Earth system model
- Chemistry module for the Earth system model
- Land surface scheme TerM: the model formulation, code architecture and applications
- Computational framework for the Earth system modelling and the INM-CM6 climate model implemented on its base
Articles in the same Issue
- Frontmatter
- Simulation of modern and future climate by INM-CM6M
- Planetary boundary layer scheme in the INMCM Earth system model
- Chemistry module for the Earth system model
- Land surface scheme TerM: the model formulation, code architecture and applications
- Computational framework for the Earth system modelling and the INM-CM6 climate model implemented on its base