Startseite Chemistry module for the Earth system model
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Chemistry module for the Earth system model

  • Sergei P. Smyshlyaev EMAIL logo , Andrei R. Yakovlev , Margarita A. Usacheva , Anastasia S. Imanova , Denis D. Romashchenko und Maxim A. Motsakov
Veröffentlicht/Copyright: 28. November 2024

Abstract

The description of the new version of the INM–RSHU chemistry–climate model, created on the basis of the climate model INMCM6.0 is presented. A special feature of the new version of the chemistry–climate model is the complete unification of the model structure with the basic core of the INMCM6.0 climate model. The transport of chemically active species in the atmosphere is performed on the same grid and by the same methods as the transport of meteorological parameters and aerosol. Chemical transformations are added as local processes at each grid point of the model, correcting the changes in tropospheric and stratospheric concentrations of chemically active species caused by dynamical processes. The model was tested using the results of calculations of changes in the chemical composition of the atmosphere over the last 20 years of the 20th century, performed with a version of the model with a resolution of 4 × 5 degrees in latitude and longitude.

MSC 2010: 65A01; 65B02

Funding statement: The work is performed within the framework of the Earth System Model Development Program supported by the state task of the Ministry of Science and Higher Education of the Russian Federation (project FSZU-2023-004). The study of the dynamics and chemistry of the Arctic atmosphere is supported by the RSF project No. 24-17-00230.

References

[1] G. Brasseur and S. Solomon, Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, Atmospheric and Oceanographic Sciences Library, Vol. 5. Springer Science & Business Media, 2012,Suche in Google Scholar

[2] G. Brasseur and D. Jacob, Modeling of Atmospheric Chemistry. Cambridge University Press, 2017.10.1017/9781316544754Suche in Google Scholar

[3] J. B. Burkholder, S. P. Sander, J. Abbatt, J. R. Barker, C. Cappa, J. D. Crounse, T. S. Dibble, R. E. Huie, C. E. Kolb, M. J. Kurylo, V. L. Orkin, C. J. Percival, D. M. Wilmouth, and P. H. Wine, Chemical kinetics and photochemical data for use in atmospheric studies, Evaluation No. 19. JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, 2019.Suche in Google Scholar

[4] N. E. Chubarova, A. S. Pastukhova, V. Y. Galin, and S. P. Smyshlyaev, Long-term variability of UV irradiance in the Moscow region according to measurement and modeling data. Izvestiya, Atmospheric and Oceanic Physics 54 (2018), No. 2, 139–146.10.1134/S0001433818020056Suche in Google Scholar

[5] N. E. Chubarova, A. S. Pastukhova, E. Y. Zhdanova, E. V. Volpert, S. P. Smyshlyaev, and V. Y. Galin, Effects of ozone and clouds on temporal variability of surface UV radiation and UV resources over Northern Eurasia derived from measurements and modeling. Atmosphere 11 (2020), No. 1, 59.10.3390/atmos11010059Suche in Google Scholar

[6] R. De Zafra and S. Smyshlyaev, On the formation of HNO3 in the Antarctic mid to upper stratosphere in winter. J. Geophys. Res. 106 (2001), 23115–23125.10.1029/2000JD000314Suche in Google Scholar

[7] B. N. Duncan, A. Gettelman, P. Hess, G. Myhre, and P. Young (Eds.), Chemistry–Climate Modelling Initiative (CCMI) (ACP/AMT/ESSD/GMD inter-journal SI). Atmos. Chem. Phys. 20 (2020), No. 1.Suche in Google Scholar

[8] E. Esenturk, L. Abraham, S. Archer-Nicholls, C. Mitsakou, P. Griffiths, A. Archibald, and J. Pyle, Quasi-Newton methods for atmospheric chemistry simulations: Implementation in UKCA UM Vn10.8. Geosci. Model. Develop. 11 (2018), 3089–3108.10.5194/gmd-11-3089-2018Suche in Google Scholar

[9] V. Eyring et al., Assessment of temperature, trace species, and ozone in chemistry–climate model simulations of the recent past. Journal of Geophysical Research 111 (2006), D22308.10.1029/2006JD007327Suche in Google Scholar

[10] V. Ya. Galin, S. P. Smyshlyaev, and E. M. Volodin, Coupled chemistry–climate model of the atmosphere. Bulletin of the Russian Academy of Sciences. Physics of the Atmosphere and Ocean 43 (2007), No. 4, 437–452.10.1134/S0001433807040020Suche in Google Scholar

[11] E. Gerber, M. Baldwin, et al., Stratosphere-troposphere coupling and annular mode variability in chemistry–climate models. J. Geoph. Res. 115 (2010), D00M06.10.1029/2009JD013770Suche in Google Scholar

[12] IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Eds. V. Masson-Delmotte et al). Cambridge University Press, Cambridge–New York, 2021.Suche in Google Scholar

[13] IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Eds. H. Lee and J. Romero). IPCC, Geneva, Switzerland, 2023.Suche in Google Scholar

[14] A. R. Jakovlev and A. P. Smyshlyaev, Impact of the Southern Oscillation on Arctic stratospheric dynamics and ozone layer. Izvestiya, Atmospheric and Oceanic Physics 55, No. 1, 86–98.10.1134/S0001433819010122Suche in Google Scholar

[15] A. Kurganskiy, C. A. Skjøth, A. Baklanov, M. Sofiev, A. Saarto, E. Severova, S. Smyshlyaev, and E. Kaas, Atmos. Chemistry and Physics 20 (2020), 2099–2121.10.5194/acp-20-2099-2020Suche in Google Scholar

[16] G. Nerobelov, M. Sedeeva, A. Mahura, R. Nuterman, S. Mostamandi, and S. Smyshlyaev, Online integrated modeling on regional scale in North-West Russia: Evaluation of aerosols influence on meteorological parameters. Geography, Environment, Sustainability 11 (2018), No. 2, 73–83.10.24057/2071-9388-2018-11-2-73-83Suche in Google Scholar

[17] G. M. Nerobelov, Y. M. Timofeyev, S. P. Smyshlyaev, S. C. Foka, and H. H. Imhasin, Comparison of CO2 content in the atmosphere of St. Petersburg according to numerical modeling and observations. Izvestiya, Atmospheric and Ocean Physics 59 (2023), No. 3, 275–286.10.1134/S0001433823020056Suche in Google Scholar

[18] A. S. Pastukhova, N. E. Chubarova, Y. Y. Zhdanova, V. Y. Galin, and S. P. Smyshlyaev, Numerical simulation of variations in ozone content, erythemal ultraviolet radiation, and ultraviolet resources over Northern Eurasia in the 21st century. Izvestiya, Atmospheric and Oceanic Physics 55 (2019), No. 3, 242–250.10.1134/S0001433819030058Suche in Google Scholar

[19] M. J. Prather, Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c. Geosci. Model Dev. 8 (2015), 2587–2595.10.5194/gmd-8-2587-2015Suche in Google Scholar

[20] A. A. Samarsky and A. V. Gulin, Numerical Methods. Nauka, Moscow, 1989 (in Russian).Suche in Google Scholar

[21] M. E. Schlesinger, A numerical investigation of the general circulation of atmospheric ozone. Ph.D. thesis. Univ. of Calif., Los Angeles, 1976.Suche in Google Scholar

[22] S. P. Smyshlyaev, V. Ya. Galin, G. Shaariibuu, and M. A. Motsakov, Modeling the variability of gas and aerosol components in the stratosphere of polar regions. Izvestiya, Atmospheric and Oceanic Physics 46 (2010), No. 3, 291–306.10.1134/S0001433810030011Suche in Google Scholar

[23] S. P. Smyshlyaev, E. A. Mareev, and V. Ya. Galin, Modeling the influence of thunderstorm activity on the gas composition of the atmosphere. Izvestiya, Atmospheric and Oceanic Physics 46 (2010), No. 4, 487–504.10.1134/S0001433810040043Suche in Google Scholar

[24] S. P. Smyshlyaev, V. Ya. Galin, E. M. Atlaskin, and P. A. Blakitnaya, Modeling of the indirect influence of the eleven-year cycle of solar activity on the gas composition of the atmosphere. Izvestiya, Atmospheric and Oceanic Physics 46 (2010), No. 5, 672–684.10.1134/S0001433810050075Suche in Google Scholar

[25] S. P. Smyshlyaev, E. A. Mareev, V. Ya. Galin, and P. A. Blakitnaya, Modeling of indirect effects of thunderstorm activity on atmospheric temperature. Izvestiya, Atmospheric and Oceanic Physics 49 (2013), No. 5, 554–518.10.1134/S0001433813050137Suche in Google Scholar

[26] S. P. Smyshlyaev, E. A. Mareev, V. Ya. Galin, and P. A. Blakitnaya, Modeling the impact of methane emissions from arctic gas hydrates on regional changes in the composition of the lower atmosphere. Izvestiya, Atmospheric and Oceanic Physics 51 (2015), No. 4, 412–422.10.1134/S000143381504012XSuche in Google Scholar

[27] S. P. Smyshlyaev, V. Ya. Galin, P. A. Blakitnaya, and A. K. Lemishchenko, Study of sensitivity to concentration and temperature of the stratosphere to variability of spectral fluxes of solar radiation caused by the 11-year cycle of solar activity. Izvestiya, Atmospheric and Oceanic Physics 52 (2016), No. 1, 16–32.10.1134/S0001433815060110Suche in Google Scholar

[28] S. P. Smyshlyaev, A. I. Pogoreltsev, V. Ya. Galin, and E. A. Drobashevskaya, The influence of wave activity on the gas composition of the stratosphere of polar regions. Geomagnetism and Aeronomy 56 (2016), No. 1, 102–116.10.1134/S0016793215060146Suche in Google Scholar

[29] S. P. Smyshlyaev, V. Y. Galin, P. A. Blakitnaya, and A. R. Jakovlev, Numerical modeling of the natural and manmade factors influencing past and current changes in polar, mid-latitude and tropical ozone. Atmosphere 11 (2020), 76.10.3390/atmos11010076Suche in Google Scholar

[30] S. P. Smyshlyaev, P. A. Blakitnaya, and M. A. Motsakov, Numerical modeling of the influence of physical and chemical factors on the interannual variability of antarctic ozone. Russian Meteorology and Hydrology 45 (2020), No. 3, 153–160.10.3103/S1068373920030024Suche in Google Scholar

[31] S. P. Smyshlyaev, P. N. Vargin, and M. A. Motsakov, Numerical modeling of ozone loss in the exceptional arctic stratosphere winter– spring of 2020. Atmosphere 12 (2021), 1470.10.3390/atmos12111470Suche in Google Scholar

[32] A. Stenke, M. Schraner, E. Rozanov, T. Egorova, B. Luo, and T. Peter, The SOCOL version 3.0 chemistry–climate model: description, evaluation, and implications from an advanced transport algorithm. Geosci. Model Dev. 6 (2013), 1407–1427.10.5194/gmd-6-1407-2013Suche in Google Scholar

[33] T. Sukhodolov, E. Rozanov, W. T. Ball, A. Bais, K. Tourpali, A. I. Shapiro, P. Telford, S. Smyshlyaev, B. Fomin, R. Sander, B. Bossay, S. Bekki, M. Marchand, M. P. Chipperfield, S. Dhomse, J. D. Haigh, Th. Peter, and W. Schmutz, Evaluation of simulated photolysis rates and their response to solar irradiance variability. J. Geophys. Res. Atmos. 121 (2016), 6066–6084.10.1002/2015JD024277Suche in Google Scholar

[34] M. Takigawa, M. Takahashi, and H. Akiyoshi, Simulation of stratospheric sulfate aerosols using a center for climate system research/national institute for environmental studies atmospheric GCM with coupled chemistry 1. Nonvolcanic simulation. J. Geophys. Res. 107 (2002), No. D22, AAC-1.10.1029/2001JD001007Suche in Google Scholar

[35] Y. M. Timofeyev, S. P. Smyshlyaev, Y. A. Virolainen, A. S. Garkusha, A. V. Polyakov, M. A. Motsakov, and O. Kirner, Case study of ozone anomalies over northern Russia in the 2015/2016 winter: Measurements and numerical modelling. Ann. Geophys. 36 (2018), 1495– 1505.10.5194/angeo-36-1495-2018Suche in Google Scholar

[36] E. M. Volodin, Simulation of present-day climate with the INMCM60 model. Izvestiya Atmospheric and Oceanic Physics 59 (2023), No. 1, 16–22.10.1134/S0001433823010139Suche in Google Scholar

[37] World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 2022, GAW Report No. 278. WMO, Geneva, 2022.Suche in Google Scholar

[38] L. Xu, K. Wei, X. Wu, S. P. Smyshlyaev, W. Chen, and V. Ya. Galin, The effect of super volcanic eruptions on ozone depletion in a chemistry–climate model. Advances in Atmospheric Sciences 36 (2019), No. 8, 823–836.10.1007/s00376-019-8241-8Suche in Google Scholar

Received: 2024-10-07
Accepted: 2024-10-10
Published Online: 2024-11-28
Published in Print: 2024-12-15

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2024-0030/html
Button zum nach oben scrollen