Startseite Towards realistic blood cell biomechanics in microvascular thrombosis simulations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Towards realistic blood cell biomechanics in microvascular thrombosis simulations

  • Aleksey V. Belyaev EMAIL logo
Veröffentlicht/Copyright: 31. Oktober 2024

Abstract

The paper is devoted to a three-dimensional mesoscale hemodynamic model for simulations of microvascular blood flows at cellular resolution. The focus is on creating a more accurate biomechanical model of red blood cells for further use in models of hemostasis and thrombosis. The presented model effectively and accurately reproduces peculiarities of blood flow under realistic hydrodynamic conditions in arterioles, venules, and capillaries, including the Fahraeus–Lindquist effect and subsequent platelet margination. In addition, shear-dependent platelet aggregation can also be captured using the proposed approach.

MSC 2010: 92C35; 76Z05

Funding statement: Funding: This research was supported by the Russian Science Foundation, grant No. 24-21-00182.

Acknowledgment

The research was carried out using the equipment (supercomputer Lomonosov-2) of the shared research facilities of HPC computing resources at Lomonosov Moscow State University [66].

References

[1] R. Adhikari, K. Stratford, M. E. Cates, and A. J. Wagner, Fluctuating lattice Boltzmann. Europhysics Letters (EPL) 71 (2005), 473–479.10.1209/epl/i2004-10542-5Suche in Google Scholar

[2] P. Ahlrichs and B. Dunweg, Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics. The Journal of Chemical Physics 111 (1999), 8225–8239.10.1063/1.480156Suche in Google Scholar

[3] A. Albanese, L. Cheng, M. Ursino, and N. W. Chbat, An integrated mathematical model of the human cardiopulmonary system: model development. American Journal of Physiology-Heart and Circulatory Physiology 310 (2016), H899–H921.10.1152/ajpheart.00230.2014Suche in Google Scholar PubMed

[4] A. Alexander-Katz and R. R. Netz, Surface-enhanced unfolding of collapsed polymers in shear flow. Europhysics Letters 80 (2007), 18001.10.1209/0295-5075/80/18001Suche in Google Scholar

[5] A. V. Belyaev, M. A. Panteleev, and F. I. Ataullakhanov, Threshold of microvascular occlusion: injury size defines the thrombosis scenario. Biophysical Journal 109 (2015), 450–456.10.1016/j.bpj.2015.06.019Suche in Google Scholar PubMed PubMed Central

[6] A. V. Belyaev, Catching platelets from the bloodflow: the role of the conformation of von Willebrand factor. Mat. Mod. Nat. Phenom. 13 (2018), 44.10.1051/mmnp/2018043Suche in Google Scholar

[7] A. V. Belyaev, Long ligands reinforce biological adhesion under shear flow. Phys. Rev. E 97 (2018), 042407.10.1103/PhysRevE.97.042407Suche in Google Scholar PubMed

[8] A. V. Belyaev, Intradimer forces and their implication for conformations of von Willebrand factor multimers. Biophysical Journal 120 (2021), 899–911.10.1016/j.bpj.2021.01.022Suche in Google Scholar PubMed PubMed Central

[9] A. V. Belyaev and Y. K. Kushchenko, Biomechanical activation of blood platelets via adhesion to von Willebrand factor studied with mesoscopic simulations. Biomechanics and Modeling in Mechanobiology 22 (2023), 785–808.10.1007/s10237-022-01681-3Suche in Google Scholar PubMed PubMed Central

[10] A. V. Belyaev, J. L. Dunster, J. M. Gibbins, M. A. Panteleev, and V. Volpert, Modelling thrombosis in silico: frontiers, challenges, unresolved problems and milestones. Physics of Life Reviews 26-27 (2018), 57–95.10.1016/j.plrev.2018.02.005Suche in Google Scholar PubMed

[11] H. T. Bergal, Y. Jiang, D. Yang, T. A. Springer, and W. P. Wong, Conformation of von Willebrand factor in shear flow revealed with stroboscopic single-molecule imaging. Blood 140 (2022), 2490–2499.10.1182/blood.2022016969Suche in Google Scholar PubMed PubMed Central

[12] N. Bessonov, E. Babushkina, S. F. Golovashchenko, A. Tosenberger, F. Ataullakhanov, M. Panteleev, A. Tokarev, and V. Volpert, Numerical modelling of cell distribution in blood flow. Math. Model. Nat. Phenom. 9 (2014), 69–84.10.1051/mmnp/20149606Suche in Google Scholar

[13] M. Chen and F. J. Boyle, An enhanced spring-particle model for red blood cell structural mechanics: application to the stomatocyte-discocyte-echinocyte transformation. Journal of Biomechanical Engineering 139 (2017).10.1115/1.4037590Suche in Google Scholar PubMed

[14] S. Chen and G. D. Doolen, Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics 30 (1998), 329–364.10.1146/annurev.fluid.30.1.329Suche in Google Scholar

[15] I. Cimrák, M. Gusenbauer, and I. Jančigová, An ESPResSo implementation of elastic objects immersed in a fluid. Computer Physics Communications 185 (2014), 900–907.10.1016/j.cpc.2013.12.013Suche in Google Scholar

[16] I. Cimrák, M. Gusenbauer, and T. Schrefl, Modelling and simulation of processes in microfluidic devices for biomedical applications, Computers and Mathematics with Applications 64 (2012), 278–288, Mathematical Methods and Models in Biosciences.10.1016/j.camwa.2012.01.062Suche in Google Scholar

[17] Z. Cui, L. Zhao, W.-X. Huang, and C.-X. Xu, Stability analysis of rotational dynamics of ellipsoids in simple shear flow. Physics of Fluids 31 (2019), No. 2.10.1063/1.5080316Suche in Google Scholar

[18] B. Dunweg and A. J. C. Ladd, Lattice Boltzmann Simulations of Soft Matter Systems, Adv. in Polymer Sci., Springer, Berlin–Heidelberg, 2008, pp. 1–78.10.1007/12_2008_4Suche in Google Scholar

[19] M. M. Dupin, I. Halliday, C. M. Care, L. Alboul, and L. L. Munn, Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E. 75 (2007), 066707.10.1103/PhysRevE.75.066707Suche in Google Scholar PubMed PubMed Central

[20] J. Dupire, M. Socol, and A. Viallat, Full dynamics of a red blood cell in shear flow. In: Proceedings of the National Academy of Sciences 109 (2012), 20808–20813.10.1073/pnas.1210236109Suche in Google Scholar PubMed PubMed Central

[21] R. Fahraeus and T. Lindqvist, The viscosity of the blood in narrow capillary tubes. American Journal of Physiology-Legacy Content 96 (1931), 562–568.10.1152/ajplegacy.1931.96.3.562Suche in Google Scholar

[22] D. A. Fedosov, M. Dao, G. E. Karniadakis, and S. Suresh, Computational bio-rheology of human blood flow in health and disease. Ann. Biomed. Eng. 42 (2014), 368–387.10.1007/s10439-013-0922-3Suche in Google Scholar PubMed PubMed Central

[23] D. A. Fedosov and G. E. Karniadakis, Triple-decker: interfacing atomistic-mesoscopic-continuum flow regimes. J. Comput. Phys. 228 (2009), 1157–1171.10.1016/j.jcp.2008.10.024Suche in Google Scholar

[24] D. A. Fedosov, B. Caswell, A. S. Popel, and G. E. Karniadakis, Blood flow and cell-free layer in microvessels: blood flow and cell-free layer in microvessels. Microcirculation 17 (2010), 615–628.10.1111/j.1549-8719.2010.00056.xSuche in Google Scholar PubMed PubMed Central

[25] T. M. Fischer, Tank-tread frequency of the red cell membrane: dependence on the viscosity of the suspending medium. Biophysical Journal 93 (2007), 2553–2561.10.1529/biophysj.107.104505Suche in Google Scholar PubMed PubMed Central

[26] A. L. Fogelson and N. Tania, Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation. Pathophysiology of Haemostasis and Thrombosis 34 (2005), 91–108.10.1159/000089930Suche in Google Scholar PubMed

[27] H. Fu, Y. Jiang, D. Yang, F. Scheiflinger, W. P. Wong, and T. A. Springer, Flow-induced elongation of von Willebrand factor precedes tension-dependent activation. Nature Communications 8 (2017), 324.10.1038/s41467-017-00230-2Suche in Google Scholar PubMed PubMed Central

[28] N. M. Geekiyanage, M. A. Balanant, E. Sauret, S. Saha, R. Flower, C. T. Lim, and Y.-T. Gu, A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies. PLOS ONE 14 (2019), e0215447.10.1371/journal.pone.0215447Suche in Google Scholar PubMed PubMed Central

[29] N. M. Geekiyanage, R. Flower, Y. T. Gu, and E. Sauret, An Improved Coarse-Grained Model to Accurately Predict Red Blood Cell Morphology and Deformability. Springer International Publishing, 2020, pp. 47–84.10.1007/978-3-030-42428-2_5Suche in Google Scholar

[30] G. Giupponi, G. De Fabritiis, and P. V. Coveney, Hybrid method coupling fluctuating hydrodynamics and molecular dynamics for the simulation of macromolecules. The Journal of Chemical Physics 126 (2007), 154903.10.1063/1.2720385Suche in Google Scholar PubMed

[31] Z. Guo, C. Zheng, and B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method. Physical Review E 65 (2002), No. 4, 046308.10.1103/PhysRevE.65.046308Suche in Google Scholar PubMed

[32] J. C. Hansen, R. Skalak, S. Chien, and A. Hoger, An elastic network model dased on the structure of the red blood cell membrane skeleton. Biophysical Journal 70 (1996), 146–166.10.1016/S0006-3495(96)79556-5Suche in Google Scholar PubMed PubMed Central

[33] M. Hoore, K. Rack, D. A. Fedosov, and G. Gompper, Flow-induced adhesion of shear-activated polymers to a substrate. Journal of Physics: Condensed Matter 30 (2018), 064001.10.1088/1361-648X/aaa4d5Suche in Google Scholar PubMed

[34] B. Huisman, M. Hoore, G. Gompper, and D. A. Fedosov, Modeling the cleavage of von Willebrand factor by ADAMTS13 protease in shear flow, Medical Engineering & Physics 48 (2017), 14–22.10.1016/j.medengphy.2017.06.044Suche in Google Scholar PubMed

[35] I. Jancigova and I. Cimrak, Non-uniform force allocation for area preservation in spring network models. International Journal for Numerical Methods in Biomedical Engineering 32 (2015).10.1002/cnm.2757Suche in Google Scholar PubMed

[36] D. M. W. Karandeniya, D. W. Holmes, E. Sauret, and Y. T. Gu, A new membrane formulation for modelling the flow of stomatocyte, discocyte, and echinocyte red blood cells. Biomechanics and Modeling in Mechanobiology 21 (2022), 899–917.10.1007/s10237-022-01567-4Suche in Google Scholar PubMed PubMed Central

[37] Q. Kimmerlin, S. Moog, A. Yakusheva, C. Ziessel, A. Eckly, M. Freund, G. Závodszky, Y. Knapp, P. Mangin, and F. Lanza, Loss of α4A- and β1-tubulins leads to severe platelet spherocytosis and strongly impairs hemostasis in mice. Blood 140 (2022), 2290–2299.10.1182/blood.2022016729Suche in Google Scholar PubMed

[38] Y. K. Kushchenko and A. V. Belyaev, Effects of hydrophobicity, tethering and size on flow-induced activation of von Willebrand factor multimers. Journal of Theoretical Biology 485 (2020), 110050.10.1016/j.jtbi.2019.110050Suche in Google Scholar PubMed

[39] O. Languin-Cattoën, E. Laborie, D. O. Yurkova, S. Melchionna, P. Derreumaux, A. V. Belyaev, and F. Sterpone, Exposure of von Willebrand factor cleavage site in A1A2A3-fragment under extreme hydrodynamic shear. Polymers 13 (2021), 3912.10.3390/polym13223912Suche in Google Scholar PubMed PubMed Central

[40] L. Lanotte, J. Mauer, S. Mendez, D. A. Fedosov, J.-M. Fromental, V. Claveria, F. Nicoud, G. Gompper, and M. Abkarian, Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions. Proceedings of the National Academy of Sciences 113 (2016), 13289–13294.10.1073/pnas.1608074113Suche in Google Scholar PubMed PubMed Central

[41] G. H. W. Lim, M. Wortis, and R. Mukhopadhyay, Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: Evidence for the bilayer-couple hypothesis from membrane mechanics, Proceedings of the National Academy of Sciences 99 (2002), 16766–16769.10.1073/pnas.202617299Suche in Google Scholar PubMed PubMed Central

[42] Z. L. Liu, C. Bresette, C. K. Aidun, and D. N. Ku, SIPA in 10 milliseconds: VWF tentacles agglomerate and capture platelets under high shear. Blood Advances 6 (2022), 2453–2465.10.1182/bloodadvances.2021005692Suche in Google Scholar PubMed PubMed Central

[43] J. Mauer, S. Mendez, L. Lanotte, F. Nicoud, M. Abkarian, G. Gompper, and D. A. Fedosov, Flow-induced transitions of red blood cell shapes under shear. Physical Review Letters 121 (2018), No. 11, 118103.10.1103/PhysRevLett.121.118103Suche in Google Scholar PubMed

[44] M. J. Maxwell, E. Westein, W. S. Nesbitt, S. Giuliano, S. M. Dopheide, and S. P. Jackson, Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood 109 (2007), 566–576.10.1182/blood-2006-07-028282Suche in Google Scholar PubMed

[45] J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mol. Cell. Biomech. 1 (2004), 169.Suche in Google Scholar

[46] L. Mountrakis, E. Lorenz, and A. G. Hoekstra, Where do the platelets go? A simulation study of fully resolved blood flow through aneurysmal vessels. Interface Focus 3 (2013), 20120089.10.1098/rsfs.2012.0089Suche in Google Scholar PubMed PubMed Central

[47] J. P. Müller, S. Mielke, A. Löf, T. Obser, C. Beer, L. K. Bruetzel, D. A. Pippig, W. Vanderlinden, J. Lipfert, R. Schneppenheim, and M. Benoit, Force sensing by the vascular protein von Willebrand factor is tuned by a strong intermonomer interaction. Proceedings of the National Academy of Sciences 113 (2016), 1208–1213.10.1073/pnas.1516214113Suche in Google Scholar PubMed PubMed Central

[48] J. M. O‘Sullivan, D. McGonagle, S. E. Ward, R. J. S. Preston, and J. S. O‘Donnell, Endothelial cells orchestrate COVID-19 coagulopathy. The Lancet Haematology 7 (2020), e553–e555.10.1016/S2352-3026(20)30215-5Suche in Google Scholar PubMed PubMed Central

[49] Z. Peng, A. Mashayekh, and Q. Zhu, Erythrocyte responses in low-shear-rate flows: effects of non-biconcave stress-free state in the cytoskeleton. Journal of Fluid Mechanics 742 (2014), 96–118.10.1017/jfm.2014.14Suche in Google Scholar

[50] K. Rack, V. Huck, M. Hoore, D. Fedosov, S. Schneider, and G. Gompper, Margination and stretching of von Willebrand factor in the blood stream enable adhesion. Scientific Reports 7 (2017), 14278.10.1038/s41598-017-14346-4Suche in Google Scholar PubMed PubMed Central

[51] W. H. Reinhart, N. Z. Piety, J. S. Goede, and S. S. Shevkoplyas, Effect of osmolality on erythrocyte rheology and perfusion of an artificial microvascular network. Microvascular Research 98 (2015), 102–107.10.1016/j.mvr.2015.01.010Suche in Google Scholar PubMed PubMed Central

[52] S. W. Schneider, S. Nuschele, A. Wixforth, C. Gorzelanny, A. Alexander-Katz, R. R. Netz, and M. F. Schneider, Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc. Nat. Acad. Sci. 104 (2007), 7899–7903.10.1073/pnas.0608422104Suche in Google Scholar PubMed PubMed Central

[53] L. Shi, T.-W. Pan, and R. Glowinski, Three-dimensional numerical simulation of red blood cell motion in Poiseuille flows, International Journal for Numerical Methods in Fluids 76 (2014), 397–415.10.1002/fld.3939Suche in Google Scholar

[54] S. Shimizu, D. Une, T. Kawada, Y. Hayama, A. Kamiya, T. Shishido, and M. Sugimachi, Lumped parameter model for hemodynamic simulation of congenital heart diseases. The Journal of Physiological Sciences 68 (2017), 103–111.10.1007/s12576-017-0585-1Suche in Google Scholar PubMed PubMed Central

[55] S. S. Simakov, Lumped parameter heart model with valve dynamics. Russian Journal of Numerical Analysis and Mathematical Modelling 34 (2019), 289–300.10.1515/rnam-2019-0025Suche in Google Scholar

[56] T. A. Springer, Von Willebrand factor, Jedi knight of the bloodstream. Blood 124 (2014), 1412–1425.10.1182/blood-2014-05-378638Suche in Google Scholar PubMed PubMed Central

[57] F. Sterpone, P. Derreumaux, and S. Melchionna, Protein simulations in fluids: coupling the OPEP coarse-grained force field with hydrodynamics. Journal of Chemical Theory and Computation 11 (2015), 1843–1853.10.1021/ct501015hSuche in Google Scholar PubMed PubMed Central

[58] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Numerical Mathematics and Scientific Computation). Oxford University Press, USA, 2001.10.1093/oso/9780198503989.001.0001Suche in Google Scholar

[59] A. A. Tokarev, A. A. Butylin, and F. I. Ataullakhanov, Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophysical Journal 100 (2011), 799–808.10.1016/j.bpj.2010.12.3740Suche in Google Scholar PubMed PubMed Central

[60] A. A. Tokarev, A. A. Butylin, E. A. Ermakova, E. E. Shnol, G. P. Panasenko, and F. I. Ataullakhanov, Finite platelet size could be responsible for platelet margination effect. Biophysical Journal 101 (2011), 1835–1843.10.1016/j.bpj.2011.08.031Suche in Google Scholar PubMed PubMed Central

[61] A. Tosenberger, F. Ataullakhanov, N. Bessonov, M. Panteleev, A. Tokarev, and V. Volpert, Modelling of thrombus growth in flow with a DPD-PDE method. Journal of Theoretical Biology 337 (2013), 30–41.10.1016/j.jtbi.2013.07.023Suche in Google Scholar PubMed

[62] R. Tran-Son-Tay, S. P. Sutera, and P. R. Rao, Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion. Biophys. J. 46 (1984), 65–72.10.1016/S0006-3495(84)83999-5Suche in Google Scholar PubMed PubMed Central

[63] K. Tsubota, Elongation deformation of a red blood cell under shear flow as stretch testing. Journal of the Mechanics and Physics of Solids 152 (2021), 104345.10.1016/j.jmps.2021.104345Suche in Google Scholar

[64] N. G. Tsyu and A. V. Belyaev, Coarse-grained simulations of von Willebrand factor adsorption to collagen with consequent platelet recruitment. International Journal for Numerical Methods in Biomedical Engineering 39 (2023), No. 11, e3747.10.1002/cnm.3747Suche in Google Scholar PubMed

[65] Yu. V. Vassilevski, S. S. Simakov, T. M. Gamilov, V. Yu. Salamatova, T. K. Dobroserdova, G. V. Kopytov, O. N. Bogdanov, A. A. Danilov, M. A. Dergachev, D. D. Dobrovolskii, O. N. Kosukhin, E. V. Larina, A. V. Meleshkina, E. Yu. Mychka, V. Yu. Kharin, K. V. Chesnokova, and A. A. Shipilov, Personalization of mathematical models in cardiology: obstacles and perspectives. Computer Research and Modeling 14 (2022), 911–930.10.20537/2076-7633-2022-14-4-911-930Suche in Google Scholar

[66] V. Voevodin, A. Antonov, D. Nikitenko, P. Shvets, S. Sobolev, I. Sidorov, K. Stefanov, V. Voevodin, and S. Zhumatiy, Supercomputer Lomonosov-2: large scale, deep monitoring and fine analytics for the user community. Supercomputing Frontiers and Innovations 6 (2019), 4–11.Suche in Google Scholar

[67] W. Yao, Z. Wen, Z. Yan, D. Sun, W. Ka, L. Xie, and S. Chien, Low viscosity ektacytometry and its validation tested by flow chamber. Journal of Biomechanics 34 (2001), 1501–1509.10.1016/S0021-9290(01)00109-9Suche in Google Scholar PubMed

[68] G. Zavodszky, B. van Rooij, V. Azizi, and A. Hoekstra, Cellular level in-silico modeling of blood rheology with an improved material model for red blood cells. Frontiers in Physiology 8 (2017).10.3389/fphys.2017.00563Suche in Google Scholar PubMed PubMed Central

Received: 2024-08-01
Revised: 2024-08-26
Accepted: 2024-08-29
Published Online: 2024-10-31
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2024-0021/pdf
Button zum nach oben scrollen