Startseite Extracting connectivity paths in digital core images using solution of partial minimum eigenvalue problem
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Extracting connectivity paths in digital core images using solution of partial minimum eigenvalue problem

  • Serguei Yu. Maliassov EMAIL logo und Yuri V. Vassilevski
Veröffentlicht/Copyright: 5. Dezember 2023

Abstract

We show theoretically and numerically that the lowest non-trivial eigenvector function for a specific eigenproblem has almost constant values in high conductivity channels, which are different in separate channels. Therefore, based on these distinct values, all separate connected clusters of open pores can be identified in digital cores.

MSC 2010: 65N25; 65Z05

Funding statement: The work is supported by the Ministry of Science and Higher Education of the Russian Federation, Agreement 075-10-2021-093, Project MMD-RND-2265.

Acknowledgment

The authors would like to thank Dr. Yalchin Efendiev for fruitful discussions and valuable suggestions.

References

[1] E. T. Chung, Y. Efendiev, and W. T. Leung, Constraint energy minimizing generalized multiscale finite element method. Computer Methods in Applied Mechanics and Engineering 339 (2018) 298–319.10.1016/j.cma.2018.04.010Suche in Google Scholar

[2] Y. Efendiev, J. Galvis, and T. Y. Hou, Generalized multiscale finite element methods (gmsfem). J. Comput. Phys. 251 (2013) 116–135.10.1016/j.jcp.2013.04.045Suche in Google Scholar

[3] Y. Efendiev and W. T. Leung, Multicontinuum homogenization and its relation to nonlocal multicontinuum theories. J. Comput. Phys. 474 (2023), 111761.10.1016/j.jcp.2022.111761Suche in Google Scholar

[4] W. R. Franklin, S. V. G. de Magalhaes, and E. N. Landis, Fast 3-D Euclidean connected components. In: 3rd ACM SIGSPATIAL International Workshop on Spatial Gems (SpatialGems 2021), November 2, 2021 (Ed. J. Krumm), ACM, 2021.Suche in Google Scholar

[5] A. V. Knyazev, Preconditioned eigensolvers. In: Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide (Eds. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst), SIAM, Philadelphia, PA, 2000, pp. 352–368.Suche in Google Scholar

[6] I. Lashuk, M. Argentati, E. Ovtchinnikov, and A. Knyazev, Preconditioned Eigensolver LOBPCG in hypre and PETSc, Vol. 55. Springer, Berlin–Heidelberg, 2007, pp. 635–642.10.1007/978-3-540-34469-8_79Suche in Google Scholar

[7] M. A. Shubin, Pseudodifferential Operators and Spectral Theory. Springer, 2001.10.1007/978-3-642-56579-3Suche in Google Scholar

[8] P. Thore and A. Lucas, Extracting connectivity paths in 3d reservoir property: A pseudo skeletonization approach. Computers and Geosciences 171 (2023), 105262.10.1016/j.cageo.2022.105262Suche in Google Scholar

[9] Y. Zhang, A. Azad, and A. Buluc, Parallel algorithms for finding connected components using linear algebra. J. Parallel and Distributed Computing 144 (2020), 14–27.10.1016/j.jpdc.2020.04.009Suche in Google Scholar

Received: 2023-10-23
Accepted: 2023-10-27
Published Online: 2023-12-05
Published in Print: 2023-12-15

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2023-0028/html
Button zum nach oben scrollen