Home Non-local discretization of the isoneutral diffusion operator in a terrain-following climate ocean model
Article
Licensed
Unlicensed Requires Authentication

Non-local discretization of the isoneutral diffusion operator in a terrain-following climate ocean model

  • Dmitry V. Blagodatskikh EMAIL logo , Nikolay G. Iakovlev , Evgenii M. Volodin and Andrey S. Gritsun
Published/Copyright: December 5, 2023

Abstract

The present paper considers numerical properties of two different approaches to discretization of the isoneutral diffusion. The necessity of an alternative treatment of the isoneutral diffusion in a terrain-following climate ocean model as opposed to the more convenient rotated tensor formalism is studied. A new method of the approximation of the isoneutral diffusion based on a non-local computational stencil is formulated. The validity of the non-local discretization of the isoneutral diffusion operator with regard to a terrain-following vertical coordinate in the INMCM ocean model is demonstrated.

MSC 2010: 65Z05; 86-08

Funding statement: The work was funded under the Russian Federation research and technical development program in ecological strategy and climate change through grant FFMG-2023-0001 ‘Development of an extended version of the Earth system INM RAS model within a new computational framework’.

References

[1] V. Balaji, E. Maisonnave, and N. Zadeh, CPMIP: measurements of real computational performance of Earth system models in CMIP6. Geosci. Model Dev. 10 (2017), 19–34.10.5194/gmd-10-19-2017Search in Google Scholar

[2] D. V. Blagodatskikh, V. A. Onoprienko, E. V. Mortikov, and N. G. Iakovlev, Comparative computational performance of two different techniques for calculation of the sea surface height in a climate ocean model. IOP Conf. Ser.: Earth Environ. Sci. 25 (2022), 012010.10.1088/1755-1315/1023/1/012010Search in Google Scholar

[3] T. L. Delworth et al., Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Clim. 25 (2012), 2755–2781.10.1175/JCLI-D-11-00316.1Search in Google Scholar

[4] P. R. Gent, J. Willebrand, T. J. McDougall, and J. C. McWilliams, Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr. 25 (1995), No. 4, 463–474.10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2Search in Google Scholar

[5] S. M. Griffies, A. Biastoch, C. Böning, F. Bryan, et al., Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modell. 26 (2009), 1–46.10.1016/j.ocemod.2008.08.007Search in Google Scholar

[6] S. M. Griffies, A. Gnanadesikan, R. C. Pacanowski, et al., Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr. 28 (1998), 805–830.10.1175/1520-0485(1998)028<0805:IDIAZC>2.0.CO;2Search in Google Scholar

[7] S. Groeskamp, P. M. Barker, T. J. McDougall, et al., VENM: An algorithm to accurately calculate neutral slopes and gradients. Journal of Advances in Modeling Earth Systems 11 (2019), 1917–1939.10.1029/2019MS001613Search in Google Scholar

[8] J. Ledwell, L. St. Laurent, J. B. Girton, and J. M. Toole, Diapycnal mixing in the Antarctic Circumpolar Current. J. Phys. Oceanogr. 41 (2011), 241–246.10.1175/2010JPO4557.1Search in Google Scholar

[9] R. Locarnini, A. Mishonov, J. Antonov, T. Boyer, H. Garcia, O. Baranova, M. Zweng, and D. Johnson, World Ocean Atlas 2009, Vol. 1: Temperature, 2010.Search in Google Scholar

[10] K. Lohmann, J. H. Jungclaus, D. Matei, J. Mignot, M. Menary, H. R. Langehaug, et al., The role of subpolar deep water formation and nordic seas overflows in simulated multidecadal variability of the Atlantic meridional overturning circulation. Ocean Science 10 (2014), No. 2, 227–241.10.5194/os-10-227-2014Search in Google Scholar

[11] T. J. McDougall, Neutral surfaces. J. Phys. Oceanogr. 17 (1987), No. 11, 1950–1967.10.1175/1520-0485(1987)017<1950:NS>2.0.CO;2Search in Google Scholar

[12] T. J. McDougall, S. Groeskamp, and S. M. Griffies, On geometrical aspects of interior ocean mixing. J. Phys. Oceanogr. 44 (2014), 2164–2175.10.1175/JPO-D-13-0270.1Search in Google Scholar

[13] NEMO ocean engine, NEMO System Team, Scientific Notes of Climate Modelling Center, 27, ISSN 1288-1619 Institut Pierre-Simon Laplace (IPSL), doi:10.5281/zenodo.146481610.5281/zenodo.1464816Search in Google Scholar

[14] R. C. Pacanowski and S. G. H. Philander, Parameterization of vertical mixing in numerical models of the tropical ocean. J. Phys. Oceanogr. 11 (1981), 1443–1451.10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2Search in Google Scholar

[15] M. H. Redi, Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr. 12 (1982), 1154–1158.10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2Search in Google Scholar

[16] E. M. Volodin, E. V. Mortikov, S. V. Kostrykin, et al., Simulation of the present-day climate with the climate model INMCM5. Clim. Dyn. 49 (2017), 3715–3734.10.1007/s00382-017-3539-7Search in Google Scholar

[17] E. M. Volodin and A. S. Gritsun, Simulation of possible future climate changes in the 21st century in the INM-CM5 climate model. Izvestiya, Atmospheric and Oceanic Physics 56 (2020), 218–228.10.1134/S0001433820030123Search in Google Scholar

[18] V. M. Volodin et al., Mathematical Modelling of the Earth System (Ed. N. G. Iakovlev). MAKS Press, Moscow, 2016.Search in Google Scholar

[19] A. P. S. Wong et al., Argo Data 1999–2019: Two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats. Frontiers in Marine Science 7 (2020), 1–22.Search in Google Scholar

Received: 2023-04-28
Revised: 2023-05-17
Accepted: 2023-10-27
Published Online: 2023-12-05
Published in Print: 2023-12-15

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/rnam-2023-0026/pdf
Scroll to top button