Personalized computational estimation of relative change in coronary blood flow after percutaneous coronary intervention in short-term and long-term perspectives
-
Sergey S. Simakov
, Timur M. Gamilov
Abstract
Coronary artery disease is the leading cause of mortality worldwide, accounting for 12.8% of all deaths. Although the clinical benefits of treating stenosis with percutaneous coronary intervention (PCI) have been extensively demonstrated, residual myocardial ischemia remains in about 30–50% of patients even after a formally successful PCI. We apply previously developed and validated 1D model of haemodynamics, which distributes terminal hydraulic resistance based on the diameters of the parent vessels and Murray’s law by a recursive algorithm. In our new model the terminal resistance is decreased according to a transmural perfusion ratio increase. In contrast to our previous work we calculate the transmural perfusion ratio for personally defined zones. Thus, peripheral hydraulic resistance of myocardial perfusion is personalized based on patient data, whichwere extracted from computed tomography perfusion images. The model serves as a computational tool for simulating pre- to post-PCI changes in coronary haemodynamics of four patients. We simulate fractional flow reserve (FFR), coronary flow reserve (CFR), instantaneous wave-free ratio (iFR), average flow in selected arteries in hyperemic and rest conditions before PCI and after PCI immediately after the surgery (in a short-term) and in a long-term (several months) perspectives. We conclude that high FFR and iFR values in short-term and long-term perspectives are not necessary correlate with CFR improvement and long-term blood flow recovery in coronary arteries.
Funding statement: The research was supported by the joint RSF-NSFC project (Russian Science Foundation, grant No. 21-41-00029 and National Natural Science Foundation of China, grant No. 12061131015).
Acknowledgment
The authors acknowledge the staff of Sechenov University especially Nina Gagarina and Ekaterina Fominykh for patient-specific FFR and CTP data.
References
[1] R. R. Baliga, S. D. Rosen, P. G. Camici, and J. S. Kooner, Regional myocardial blood flow redistribution as a cause of postprandial angina pectoris. Circulation 97 (1998), No. 12, 1144–1149.10.1161/01.CIR.97.12.1144Suche in Google Scholar PubMed
[2] P. G. Camici and M. Magnoni, How important is microcirculation in clinical practice? Eur. Heart J. Suppl. 21 (2019), B25– B27.10.1093/eurheartj/suz015Suche in Google Scholar PubMed PubMed Central
[3] J. M. Carson, S. Pant , C. Roobottom, R. Alcock, P. J. Blanco, C. A. Carlos Bulant, Y. Vassilevski, S. Simakov, T. Gamilov, R. Pryamonosov, F. Liang, X. Ge, Y. Liu, and P. Nithiarasu, Non-invasive coronary CT angiography-derived fractional flow reserve: A benchmark study comparing the diagnostic performance of four different computational methodologies. Int. J. Numer. Meth. Biomed. Engrg. 35 (2019), No. 10, e3235.10.1002/cnm.3235Suche in Google Scholar PubMed PubMed Central
[4] J. M. Carson, C. Roobottom, R. Alcock, and P. Nithiarasu, Computational instantaneous wave-free ratio (IFR) for patient-specific coronary artery stenoses using 1D network models. Int. J. Numer. Meth. Biomed. Engrg. 35 (2019), No. 11, e3255.10.1002/cnm.3255Suche in Google Scholar PubMed PubMed Central
[5] A. Coenen, A. Rossi, M. M. Lubbers, A. Kurata, A. K. Kono, R. G. Chelu, S. Segreto, M. L. Dijkshoorn, A. Wragg, R.-J. M. van Geuns, F. Pugliese, and K. Nieman, Integrating CT myocardial perfusion and CT-FFR in the work-up of coronary artery disease. JACC: Cardiovasc. Imaging 10 (2017), No. 7, 760–770.10.1016/j.jcmg.2016.09.028Suche in Google Scholar PubMed
[6] A. Coenen, M. M. Lubbers, A. Kurata, A. Kono, A. Dedic, R. G. Chelu, M. L. Dijkshoorn, A. Rossi, R. M. van Geuns, and K. Nieman, Diagnostic value of transmural perfusion ratio derived from dynamic CT-based myocardial perfusion imaging for the detection of haemodynamically relevant coronary artery stenosis. Eur. Radiol. 27 (2017), No. 6, 2309–2316.10.1007/s00330-016-4567-0Suche in Google Scholar PubMed PubMed Central
[7] R. C. Cury, T. A. Magalhães, A. T. Paladino, A. A. Shiozaki, M. Perini, T. Senra, P. A. Lemos, R. C. Cury, and C. E. Rochitte, Dipyridamole stress and rest transmural myocardial perfusion ratio evaluation by 64 detector-row computed tomography. J. Cardiovasc. Comput. Tomography 5 (2011), No. 6, 443–448.10.1016/j.jcct.2011.10.012Suche in Google Scholar PubMed
[8] A. Danilov, Yu. Ivanov, R. Pryamonosov, and Yu. Vassilevski, Methods of graph network reconstruction in personalized medicine. Int. J. Numer. Meth. Biomed. Engrg. 32 (2016), No. 8, e02754.10.1002/cnm.2754Suche in Google Scholar
[9] T. M. Gamilov, P. Yu. Kopylov, R. A. Pryamonosov, and S. S. Simakov, Virtual fractional flow reserve assessment in patient-specific coronary networks by 1D haemodynamic model. Russ. J. Numer. Anal. Math. Modelling 30 (2015), No. 5, 269–276.10.1515/rnam-2015-0024Suche in Google Scholar
[10] T. M. Gamilov, F. Y. Liang, and S. S. Simakov, Mathematical modeling of the coronary circulation during cardiac pacing and tachycardia. Lobachevskii J. Math. 40 (2019), No. 4, 448–458.10.1134/S1995080219040073Suche in Google Scholar
[11] T. Gamilov, P. Kopylov, M. Serova, R. Syunyaev, A. Pikunov, S. Belova, F. Liang, J. Alastruey, and S. Simakov, Computational analysis of coronary blood flow: The role of asynchronous pacing and arrhythmias. Mathematics 8 (2020), No. 8, 1205.10.3390/math8081205Suche in Google Scholar
[12] T. Gamilov and S. Simakov, Blood flow under mechanical stimulations. Advances in Intelligent Systems and Computing (2020), 1028 AISC, 143–150.10.1007/978-3-030-35048-2_17Suche in Google Scholar
[13] X. Ge, Y. Liu, S. Tu, S. Simakov, Y. Vassilevski, and F. Liang, Model-based analysis of the sensitivities and diagnostic implications of FFR and CFR under various pathological conditions. Int. J. Numer. Meth. Biomed. Engrg. 35 (2019), e3257.10.1002/cnm.3257Suche in Google Scholar PubMed
[14] X. Ge, S. Simakov, Y. Liu, and F. Liang, Impact of arrhythmia on myocardial perfusion: A computational model-based study. Mathematics 9 (2021), No. 17, 2128.10.3390/math9172128Suche in Google Scholar
[15] R. T. George, A. Arbab-Zadeh, J. M. Miller, K. Kitagawa, H. J. Chang, D. A. Bluemke, L. Becker, O. Yousuf, J. Texter, A. C. Lardo, and J. A. Lima, Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion imaging: a pilot study evaluating the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia. Circulation. Cardiovascular Imaging 2 (2009), No. 3, 174–182.10.1161/CIRCIMAGING.108.813766Suche in Google Scholar PubMed PubMed Central
[16] K. L. Gould, R. L. Kirkeeide, and M. Buchi, Coronary flow reserve as a physiologic measure of stenosis severity. J. Amer. Coll. Cardiol. 15 (1990), No. 2, 459–474.10.1016/S0735-1097(10)80078-6Suche in Google Scholar
[17] A. R. Ihdayhid, T. Sakaguchi, J. J. Linde, M. H. Sørgaard, K. F. Kofoed, Y. Fujisawa, J. Hislop-Jambrich, N. Nerlekar, J. D. Cameron, R. K. Munnur, M. Crosset, D. Wong, S. K. Seneviratne, and B. S. Ko, Performance of computed tomography-derived fractional flow reserve using reduced-order modelling and static computed tomography stress myocardial perfusion imaging for detection of haemodynamically significant coronary stenosis. Eur. Heart J. Cardiovasc. Imaging 19 (2018), No. 11, 1234–1243.10.1093/ehjci/jey114Suche in Google Scholar PubMed
[18] A. Jeremias, A. J. Kirtane, and G. W. Stone, A test in context: Fractional flow reserve: accuracy, prognostic implications, and limitations. J. Amer. Coll. Cardiol. 69 (2017), No. 22, 2748–2758.10.1016/j.jacc.2017.04.019Suche in Google Scholar PubMed
[19] E. W. Lo, L. J. Menezes, and R. Torii, On outflow boundary conditions for CT-based computation of FFR: Examination using PET images. Medical Engrg. & Phys. 76 (2020), 79–87.10.1016/j.medengphy.2019.10.007Suche in Google Scholar PubMed
[20] S. S. Nijjer, S. Sen, R. Petraco, R. Sachdeva, F. Cuculi, J. Escaned, C. Broyd, N. Foin, N. Hadjiloizou, R. A. Foale, I. Malik, G. W. Mikhail, A. S. Sethi, M. Al-Bustami, R. R. Kaprielian, M. A. Khan, C. S. Baker, M. F. Bellamy, A. D. Hughes, J. Mayet, R. K. Kharbanda, C. Di Mario, and J. E. Davies, Improvement in coronary haemodynamics after percutaneous coronary intervention: assessment using instantaneous wave-free ratio. Heart 99 (2013), No. 23, 1740–1748.10.1136/heartjnl-2013-304387Suche in Google Scholar PubMed PubMed Central
[21] N. H. J. Pijls, B. de Bruyne, K. Peels, P. H. van der Voort, H. J..R..M. Bonnier, J. Bartunek, and J. J. Koolen, Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. New England J. Medicine 334 (1996), No. 26, 1703–1708.10.1056/NEJM199606273342604Suche in Google Scholar PubMed
[22] A. Ruiz-Muñoz, F. Valente, L. Dux-Santoy, A. Guala, G. Teixidó-Turà, L. Galián-Gay, L. Gutiérrez, R. Fernández-Galera, G. Casas, T. González-Alujas, I. Ferreira-González, A. Evangelista, and J. Rodríguez-Palomares, Diagnostic value of quantitative parameters for myocardial perfusion assessment in patients with suspected coronary artery disease by single- and dual-energy computed tomography myocardial perfusion imaging. IJC Heart & Vasculature 32 (2021), 100721.10.1016/j.ijcha.2021.100721Suche in Google Scholar PubMed PubMed Central
[23] G. Sambuceti, A. L’Abbate, and M. Marzilli, Why should we study the coronary microcirculation? Amer. J. Physiology-Heart and Circulatory Physiology 279 (2000), No. 6, H2581–H2584.10.1152/ajpheart.2000.279.6.H2581Suche in Google Scholar
[24] S. Seitun, C. De Lorenzi, F. Cademartiri, A. Buscaglia, N. Travaglio, M. Balbi, G.P. Bezante, CT myocardial perfusion imaging: A new frontier in cardiac imaging. BioMed Research International (2018), 7295460.10.1155/2018/7295460Suche in Google Scholar PubMed PubMed Central
[25] S. Sen, J. Escaned, I.S. Malik, G.W. Mikhail, R.A. Foale, R. Mila, J. Tarkin, R. Petraco, C. Broyd, R. Jabbou, A. Sethi, C. S. Baker, M. Bellamy, M. Al-Bustami, D. Hackett, M. Khan, D. Lefroy, K. H. Parker, A. D. Hughes, D. P. Francis, C. Di Mario, J. Mayet, and J. E. Davies, Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (Adenosine Vasodilator Independent Stenosis Evaluation) study. J. Am. Coll. Cardiol. 59 (2012), No. 15, 1392–402.10.1016/j.jacc.2011.11.003Suche in Google Scholar PubMed
[26] S. Simakov, Spatially averaged haemodynamic models for different parts of cardiovascular system. Russ. J. Numer. Anal. Math. Modelling 35 (2020), No. 5, 285–294.10.1515/rnam-2020-0024Suche in Google Scholar
[27] S. Simakov, T. Gamilov, F. Liang, D. Gognieva, M. Gappoeva, and Ph. Kopylov, Numerical evaluation of the effectiveness of coronary revascularization. Russ. J. Numer. Anal. Math. Modelling 36 (2021), No. 5, 303–312.10.1515/rnam-2021-0025Suche in Google Scholar
[28] S. Simakov, T. Gamilov, F. Liang, and Ph. Kopylov, Computational analysis of haemodynamic indices in synthetic atherosclerotic coronary netwroks. Mathematics 9 (2021), No. 18, 2221.10.3390/math9182221Suche in Google Scholar
[29] Yu. Vassilevski, V. Yu. Salamatova, and S. S. Simakov, On the elasticity of blood vessels in one-dimensional problems of haemodynamics. Comput. Math. Math. Phys. 55 (2015), No. 9, 1567–1578.10.1134/S0965542515090134Suche in Google Scholar
[30] Yu. V. Vassilevski, A. A. Danilov, T. M. Gamilov, S. S. Simakov, Y. A. Ivanov, and R. A. Pryamonosov, Patient-specific anatomical models in human physiology. Russ. J. Numer. Anal. Math. Modelling 30 (2015), No. 3, 185–201.10.1515/rnam-2015-0017Suche in Google Scholar
[31] Yu. Vassilevski, M. Olshanskii, S. Simakov, A. Kolobov, and A. Danilov, Personalized Computational Haemodynamics: Models, Methods, and Applications for Vascular Surgery and Antitumor Therapy. Academic Press, 2020.Suche in Google Scholar
[32] M. M. Zaman, S. S. Haque, M. A. Siddique, S. Banerjee, C. M. Ahmed, A. K. Sharma, M. F. Rahman, M. H. Haque, A. I. Joarder, A. U. Sultan, and K. Fatema, Correlation between severity of coronary artery stenosis and perfusion defect assessed by SPECT myocardial perfusion imaging. Mymensingh Med. J. 10 (2010), No. 4, 608–613.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Contents
- Application of minimum description length criterion to assess the complexity of models in mathematical immunology
- Computational mimicking of surgical leaflet suturing for virtual aortic valve neocuspidization
- Personalized computational estimation of relative change in coronary blood flow after percutaneous coronary intervention in short-term and long-term perspectives
- Algorithms and methodological challenges in the development and application of quantitative systems pharmacology models: a case study in type 2 diabetes
- Computational analysis of the impact of aortic bifurcation geometry to AAA haemodynamics
Artikel in diesem Heft
- Contents
- Application of minimum description length criterion to assess the complexity of models in mathematical immunology
- Computational mimicking of surgical leaflet suturing for virtual aortic valve neocuspidization
- Personalized computational estimation of relative change in coronary blood flow after percutaneous coronary intervention in short-term and long-term perspectives
- Algorithms and methodological challenges in the development and application of quantitative systems pharmacology models: a case study in type 2 diabetes
- Computational analysis of the impact of aortic bifurcation geometry to AAA haemodynamics