Startseite A finite element scheme for the numerical solution of the Navier–Stokes/Biot coupled problem
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A finite element scheme for the numerical solution of the Navier–Stokes/Biot coupled problem

  • Alexander Lozovskiy , Maxim A. Olshanskii und Yuri V. Vassilevski EMAIL logo
Veröffentlicht/Copyright: 15. Juni 2022

Abstract

A finite element method for a monolithic quasi-Lagrangian formulation of a fluid–porous structure interaction problem with a corrected balance of stresses on the fluid–structure interface is considered. Deformations of the elastic medium are not necessarily small and are modelled using Saint Venant–Kirchhoff (SVK) constitutive relation. The stability of the method is proved in a form of energy bound for the finite element solution.

MSC 2010: 76M10; 65M12; 74F10; 76Z05

Funding statement: The research of the first author was supported by the Russian Science Foundation grant 19-71-10094.

References

[1] C. Ager, B. Schott, M. Winter, and W. A. Wall, A Nitsche-based cut finite element method for the coupling of incompressible fluid flow with poroelasticity. Computer Methods in Applied Mechanics and Engineering 351 (2019), 253–280.10.1016/j.cma.2019.03.015Suche in Google Scholar

[2] I. Ambartsumyan, E. Khattatov, I. Yotov, and P. Zunino, A Lagrange multiplier method for a Stokes–Biot fluid–poroelastic structure interaction model. Numerische Mathematik 140 (2018), No. 2, 513–553.10.1007/s00211-018-0967-1Suche in Google Scholar

[3] P. R. Amestoy et al., MUMPS (MUltifrontal Massively Parallel sparse direct Solver) http://mumps-consortium.orgSuche in Google Scholar

[4] L. Badea, M. Discacciati, and A. Quarteroni, Numerical analysis of the Navier–Stokes/Darcy coupling. Numerische Mathematik 115 (2010), No 2, 195–227.10.1007/s00211-009-0279-6Suche in Google Scholar

[5] S. Badia, A. Quaini, and A. Quarteroni, Coupling Biot and Navier–Stokes equations for modelling fluid–poroelastic media interaction. Journal of Computational Physics 228 (2009), No. 21, 7986–8014.10.1016/j.jcp.2009.07.019Suche in Google Scholar

[6] Y. Bazilevs, J. R. Gohean, T. J. R. Hughes, R. D. Moser, and Y. Zhang, Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Computer Methods in Applied Mechanics and Engineering 198 (2009), No 45-46, 3534–3550.10.1016/j.cma.2009.04.015Suche in Google Scholar

[7] M. Braack and P. B. Mucha, Directional do-nothing condition for the Navier–Stokes equations. Journal of Computational Mathematics (2014), 507–521.10.4208/jcm.1405-m4347Suche in Google Scholar

[8] M. Bukač, I. Yotov, R. Zakerzadeh, and P. Zunino, Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach. Computer Methods in Applied Mechanics and Engineering 292 (2015), 138–170.10.1016/j.cma.2014.10.047Suche in Google Scholar

[9] M. Bukač, I. Yotov, R. Zakerzadeh, and P. Zunino, Effects of poroelasticity on fluid-structure interaction in arteries: A computational sensitivity study. In: Modeling the Heart and the Circulatory System. Springer, 2015.10.1007/978-3-319-05230-4_8Suche in Google Scholar

[10] A. Çeşmelioğlu and B. Rivière, Analysis of time-dependent Navier–Stokes flow coupled with Darcy flow. Journal of Numerical Mathematics 16 (2008), 249–280.10.1515/JNUM.2008.012Suche in Google Scholar

[11] A. Cesmelioglu, V. Girault, and B. Riviere, Time-dependent coupling of Navier–Stokes and Darcy flows. ESAIM: Mathematical Modelling and Numerical Analysis 47 (2013), No. 2, 539–554.10.1051/m2an/2012034Suche in Google Scholar

[12] A. Çeşmelioğlu and B. Rivière, Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. Journal of Scientific Computing 40 (2009), No. 1, 115–140.10.1007/s10915-009-9274-4Suche in Google Scholar

[13] S. Charnyi, T. Heister, M. A. Olshanskii, and L. G. Rebholz, On conservation laws of Navier–Stokes Galerkin discretizations. Journal of Computational Physics 337 (2017), 289–308.10.1016/j.jcp.2017.02.039Suche in Google Scholar

[14] K. Y. Chooi, A. Comerford, S. J. Sherwin, and P. D. Weinberg, Intimal and medial contributions to the hydraulic resistance of the arterial wall at different pressures: a combined computational and experimental study. Journal of The Royal Society Interface 13 (2016), No. 119, 20160234.10.1098/rsif.2016.0234Suche in Google Scholar

[15] J. Degroote, R. Haelterman, S. Annerel, P. Bruggeman, and J. Vierendeels, Performance of partitioned procedures in fluid–structure interaction. Computers & Structures 88 (2010), No. 7-8, 446–457.10.1016/j.compstruc.2009.12.006Suche in Google Scholar

[16] A. Eken and M. Sahin, A parallel monolithic algorithm for the numerical simulation of large-scale fluid structure interaction problems. International Journal for Numerical Methods in Fluids 80 (2016), No. 12, 687–714.10.1002/fld.4169Suche in Google Scholar

[17] L. Formaggia, J.-F. Gerbeau, F. Nobile, and A. Quarteroni, On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Computer Methods in Applied Mechanics and Engineering 191 (2001), No. 6-7, 561–582.10.1016/S0045-7825(01)00302-4Suche in Google Scholar

[18] M. W. Gee, U. Küttler, and W. A. Wall, Truly monolithic algebraic multigrid for fluid–structure interaction. International Journal for Numerical Methods in Engineering 85 (2011), No. 8, 987–1016.10.1002/nme.3001Suche in Google Scholar

[19] J.-F. Gerbeau and M. Vidrascu, A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. ESAIM: Mathematical Modelling and Numerical Analysis 37 (2003), No. 4, 631–647.10.1051/m2an:2003049Suche in Google Scholar

[20] V. Girault and B. Rivière, DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition. SIAM Journal on Numerical Analysis 47 (2009), No. 3, 2052–2089.10.1137/070686081Suche in Google Scholar

[21] J.-L. Guermond and L. Quartapelle, A projection FEM for variable density incompressible flows. Journal of Computational Physics 165 (2000), No. 1, 167–188.10.1006/jcph.2000.6609Suche in Google Scholar

[22] A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Computer Methods in Applied Mechanics and Engineering 191 (2002), No. 47-48, 5537–5552.10.1016/S0045-7825(02)00524-8Suche in Google Scholar

[23] J. Hron and S. Turek, A monolithic FEM/multigrid solver for an ALE formulation of fluid-structure interaction with applications in biomechanics. Springer, Berlin–Heidelberg, 2006.10.1007/3-540-34596-5_7Suche in Google Scholar

[24] T. Karper, K.-A. Mardal, and R. Winther, Unified finite element discretizations of coupled Darcy–Stokes flow. Numerical Methods for Partial Differential Equations: An International Journal 25 (2009), No. 2, 311–326.10.1002/num.20349Suche in Google Scholar

[25] N. Koshiba, J. Ando, X. Chen, and T. Hisada, Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model. Journal of Biomechanical Engineering 129 (2007), No. 3, 374–385.10.1115/1.2720914Suche in Google Scholar PubMed

[26] U. Küttler and W. A. Wall, Fixed-point fluid–structure interaction solvers with dynamic relaxation. Computational Mechanics 43 (2008), No. 1, 61–72.10.1007/s00466-008-0255-5Suche in Google Scholar

[27] M. Landajuela, M. Vidrascu, D. Chapelle, and M. A. Fernández, Coupling schemes for the FSI forward prediction challenge: comparative study and validation. International Journal for Numerical Methods in Biomedical Engineering 33 (2017), No. 4, e2813.10.1002/cnm.2813Suche in Google Scholar PubMed

[28] K. Lipnikov, Yu. Vassilevski, A. Danilov, et al., Advanced Numerical Instruments 3D http://sourceforge.net/projects/ani3dSuche in Google Scholar

[29] A. Lozovskiy, M. A. Olshanskii, V. Salamatova, and Yu. V. Vassilevski, An unconditionally stable semi-implicit FSI finite element method. Computer Methods in Applied Mechanics and Engineering 297 (2015), 437–454.10.1016/j.cma.2015.09.014Suche in Google Scholar

[30] A. Lozovskiy, M. A. Olshanskii, and Yu. V. Vassilevski, Analysis and assessment of a monolithic FSI finite element method. Computers & Fluids 179 (2019), 277–288.10.1016/j.compfluid.2018.11.004Suche in Google Scholar

[31] A. G. Malan and O. F. Oxtoby, An accelerated, fully-coupled, parallel 3D hybrid finite-volume fluid–structure interaction scheme. Computer Methods in Applied Mechanics and Engineering 253 (2013), 426–438.10.1016/j.cma.2012.09.004Suche in Google Scholar

[32] T. J. Mitchison, G. T. Charras, and L. Mahadevan, Implications of a poroelastic cytoplasm for the dynamics of animal cell shape. In: Seminars in Cell& Ddevelopmental Biology, Vol. 19. Elsevier, 2008.10.1016/j.semcdb.2008.01.008Suche in Google Scholar PubMed PubMed Central

[33] S. Polzer, T. C. Gasser, B. Markert, J. Bursa, and P. Skacel, Impact of poroelasticity of intraluminal thrombus on wall stress of abdominal aortic aneurysms. Biomedical Engineering Online 11 (2012), No. 1, 1–13.10.1186/1475-925X-11-62Suche in Google Scholar PubMed PubMed Central

[34] R. Ruiz-Baier, M. Taffetani, H. D. Westermeyer, and I. Yotov, The Biot–Stokes coupling using total pressure: Formulation, analysis and application to interfacial flow in the eye. Computer Methods in Applied Mechanics and Engineering 389 (2022), 114384.10.1016/j.cma.2021.114384Suche in Google Scholar

[35] R. E. Showalter, Poroelastic filtration coupled to Stokes flow. Lecture Notes in Pure and Applied Mathematics, Vol. 242, 2005, 229.10.1201/9781420028317.ch16Suche in Google Scholar

[36] J. Wen and Y. He, A strongly conservative finite element method for the coupled Stokes–Biot model. Computers & Mathematics with Applications 80 (2020), No. 5, 1421–1442.10.1016/j.camwa.2020.07.001Suche in Google Scholar

Received: 2022-01-17
Accepted: 2022-03-14
Published Online: 2022-06-15
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2022-0014/html
Button zum nach oben scrollen