Abstract
The paper is devoted to the construction of optimal stochastic forcings for studying the sensitivity of linear dynamical systems to external perturbations. The optimal forcings are sought to maximize the Schatten norms of the response. As an example,we consider the problem of constructing the optimal stochastic forcing for the linear dynamical system arising from the analysis of large-scale structures in a stratified turbulent Couette flow.
Funding statement: The work was supported by the Russian Science Foundation (grant No. 17-71-20149).
Acknowledgment
The authors are grateful to E. V. Mortikov for the valuable remarks and fruitful discussions.
References
[1] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst (Eds.), Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, 2000.10.1137/1.9780898719581Suche in Google Scholar
[2] B. Bamieh and M. Dahleh, Energy amplification in channel flows with stochastic excitation. Phys. Fluids 13 (2001), 3258– 3269.10.1063/1.1398044Suche in Google Scholar
[3] R. H. Bartels and G. W. Stewart, Solution of the matrix equation AX + XB = C. Commun. ACM 15 (1972), 820–826.10.1145/361573.361582Suche in Google Scholar
[4] R. Bhatia, A note on the Lyapunov equation. Linear Alg. Appl. 259 (1997), 71–76.10.1016/S0024-3795(96)00242-XSuche in Google Scholar
[5] R. Bhatia, Matrix Analysis. Springer-Verlag, New York, 1997.10.1007/978-1-4612-0653-8Suche in Google Scholar
[6] R. Bhatia, Positive Definite Matrices. Princeton University Press, 2009.10.1515/9781400827787Suche in Google Scholar
[7] R. Byers and S. Nash, On the singular ‘vectors’ of the Lyapunov operator. SIAM J. Alg. Discr. Meth. 8 (1987), No. 1, 59–66.10.1137/0608003Suche in Google Scholar
[8] C. Cossu and Y. Hwang, Self-sustaining processes at all scales in wall-bounded turbulent shear flows. Phil. Trans. R. Soc. A 375 (2017), 20160088.10.1098/rsta.2016.0088Suche in Google Scholar PubMed PubMed Central
[9] B. F. Farrell and P. J. Ioannou, Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids A 5 (1993), No. 11, 2600–2609.10.1063/1.858894Suche in Google Scholar
[10] B. F. Farrell and P. J. Ioannou, Generalized stability theory. Part I: Autonomous operators. J. Atmos. Sci. 53 (1996), No. 14, 2025–2040.10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2Suche in Google Scholar
[11] A. V. Glazunov, E. V. Mortikov, K. V. Barskov, E. V. Kadantsev, and S. S. Zilitinkevich, Layered structure of stably stratified turbulent shear flows. Izv. Atmos. Ocean. Phys. 55 (2019), 312–323.10.1134/S0001433819040042Suche in Google Scholar
[12] S. K. Godunov, Modern Aspects of Linear Algebra. Translations of Math. Monographs. Amer. Math. Society, 1998.10.1090/mmono/175Suche in Google Scholar
[13] S. J. Hammarling, Numerical solution of the stable, non-negative definite Lyapunov equation. IMA J. Num. Anal. 2 (1982), 303–325.10.1093/imanum/2.3.303Suche in Google Scholar
[14] Y. Hwang and C. Cossu, Amplification of coherent streaks in the turbulent Couette flow: an input-output analysis at low Reynolds number. J. Fluid Mech., 643 (2010), 333–348.10.1017/S0022112009992151Suche in Google Scholar
[15] Y. Hwang and C. Cossu, Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech. 664 (2010), 51–73.10.1017/S0022112010003629Suche in Google Scholar
[16] C. Kenney and G. Hewer, The sensitivity of the algebraic and differential Riccati equations. SIAM J. Control Optim. 28 (1990), 50–69.10.1137/0328003Suche in Google Scholar
[17] C. Kenney and G. Hewer, Trace norm bounds for stable Lyapunov operators. Linear Alg. Appl. 221 (1995), 1–18.10.1016/0024-3795(93)00219-PSuche in Google Scholar
[18] Yu. M. Nechepurenko, On the dimension reduction of linear differential-algebraic control systems. Doklady Math. 86 (2012), 457–459.10.1134/S1064562412040059Suche in Google Scholar
[19] R. W. Preisendorfer and C. D. Mobley, Principal Component Analysis in Meteorology and Oceanography. In: Developments in Atmospheric Science, Vol. 17. Elsevier, Amsterdam–New York, 1988.Suche in Google Scholar
[20] S. Särkkä and A. Sorin, Applied Stochastic Differential Equations. Cambridge University Press, 2019.10.1017/9781108186735Suche in Google Scholar
[21] K. Taira et al., Modal analysis of fluid flows: an overview. AIAA J. 55 (2017), 4013–4041.10.2514/1.J056060Suche in Google Scholar
[22] G. V. Zasko, A. V. Glazunov, E. V. Mortikov, and Yu. M. Nechepurenko, Large-scale structures in stratified turbulent Couette flow and optimal disturbances. Russ. J. Num. Anal. Math. Model. 35 (2020), No. 1, 37–53.10.1515/rnam-2020-0004Suche in Google Scholar
[23] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. Prentice Hall, 1996.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Development of a numerical stochastic model of joint spatio-temporal fields of weather parameters for the south part of the Baikal natural territory
- Discrete curvatures for planar curves based on Archimedes’ duality principle
- Predictability of the low-frequency modes of the Arctic Ocean heat content variability: a perfect model approach
- Optimal stochastic forcings for sensitivity analysis of linear dynamical systems
- On the multi-annual potential predictability of the Arctic Ocean climate state in the INM RAS climate model
Artikel in diesem Heft
- Frontmatter
- Development of a numerical stochastic model of joint spatio-temporal fields of weather parameters for the south part of the Baikal natural territory
- Discrete curvatures for planar curves based on Archimedes’ duality principle
- Predictability of the low-frequency modes of the Arctic Ocean heat content variability: a perfect model approach
- Optimal stochastic forcings for sensitivity analysis of linear dynamical systems
- On the multi-annual potential predictability of the Arctic Ocean climate state in the INM RAS climate model