Startseite Numerical-statistical study of the prognostic efficiency of the SEIR model
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Numerical-statistical study of the prognostic efficiency of the SEIR model

  • Galiya Z. Lotova EMAIL logo , Vitaliy L. Lukinov , Mikhail A. Marchenko , Guennady A. Mikhailov und Dmitrii D. Smirnov
Veröffentlicht/Copyright: 3. Dezember 2021

Abstract

A comparative analysis of the differential and the corresponding stochastic Poisson SEIR-models is performed for the test problem of COVID-19 epidemic in Novosibirsk modelling the period from March 23, 2020 to June 21, 2020 with the initial population N = 2 798 170. Varying the initial population in the form N = n m with m ⩾ 2, we show that the average numbers of identified sick patients is less (beginning from April 7, 2020) than the corresponding differential values by the quantity that does not differ statistically from C(t)/m, with C ≈ 27.3 on June 21, 2020. This relationship allows us to use the stochastic model for big population N. The practically useful ‘two sigma’ confidential interval for the time interval from June 1, 2020 to June 21, 2020 is about 108% (as to the statistical average) and involves the corresponding real statistical estimates. The influence of the introduction of delay on the prognosis, i.e., the incubation period corresponding to Poisson model is also studied.

MSC 2010: 65C05
  1. funding The work was performed within the framework of State Assignment of ICM&MG SB RAS (project 0251–2021–0002).

References

[1] V. A. Adarchenko, S. A. Baban', A. A. Bragin, K. F. Grebenkin, O. V. Zatsepin, A. S. Kozlovskikh, V. V. Legon'kov, E. N. Lipilina, I. A. Litvinenko, P. A. Loboda, A. A. Ovechkin, G. N. Rykovatov, et al., Modelling the development of the coronavirus epidemic using differential and statistical models. RFNC-VNIITF, Preprint No. 264. Snezhinsk, 2020 (in Russian).Suche in Google Scholar

[2] M. S. Ivanov, M. A. Korotchenko, G. A. Mikhailov, and S. V. Rogazinskii, Global weighted Monte Carlo method for the nonlinear Boltzmann equation. Comput. Math. Math. Phys. 45 (2005), No. 10, 1792–1801.Suche in Google Scholar

[3] O. I. Krivorotko, S. I. Kabanikhin, N. Yu. Zyatkov, A. Yu. Prikhodko, N. M. Prokhoshin, and M. A. Shishlenin, Mathematical modeling and forecasting of COVID-19 in Moscow and Novosibirsk regions. Numerical Analysis and Applications 13 (2020), No. 4, 332–348.10.1134/S1995423920040047Suche in Google Scholar

[4] M. Marchenko, PARMONC — A software library for massively parallel stochastic simulation. Lect. Notes Comp. Sci. 6873 (2011), 302–315.10.1007/978-3-642-23178-0_27Suche in Google Scholar

[5] M. A. Marchenko and G. A. Mikhailov, Distributed computing by the Monte Carlo method. Automation and Remote Control 68 (2007), No. 5, 888–900.10.1134/S0005117907050141Suche in Google Scholar

[6] N. V. Pertsev, K. K. Loginov, and V. A. Topchii, Analysis of a stage-dependent epidemic model based on a non-Markov random process. J. Appl. Industr. Math. 14 (2020), No. 3, 566–580.10.1134/S1990478920030151Suche in Google Scholar

[7] I. Sazonov, D. Grebennikov, M. Kelbert, and G. Bocharov, Modelling stochastic and deterministic behaviours in virus infection dynamics. Math. Model. Nat. Phenom. 12 (2017), No. 5, 63–77.10.1051/mmnp/201712505Suche in Google Scholar

[8] A. I. Vlad, T. E. Sannikova, and A. A. Romanyukha, Transmission of acute respiratory infections in a city: agent-based approach. Math. Biology Bioinform. 15 (2020), No. 2, 338–356.10.17537/2020.15.338Suche in Google Scholar

Received: 2021-07-01
Accepted: 2021-09-28
Published Online: 2021-12-03
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2021-0027/pdf
Button zum nach oben scrollen