Two-scale haemodynamic modelling for patients with Fontan circulation
-
Tatiana K. Dobroserdova
, Yuri V. Vassilevski
, Sergey S. Simakov , Timur M. Gamilov , Andrey A. Svobodov und Lyudmila A. Yurpolskaya
Abstract
Palliation of congenital single ventricle heart defects suggests multi-stage surgical interventions that divert blood flow from the inferior and superior vena cava directly to the right and left pulmonary arteries, skipping the right ventricle. Such system with cavopulmonary anastomoses and single left ventricle is called Fontan circulation, and the region of reconnection is called the total cavopulmonary connection (TCPC). Computational blood flow models allow clinicians to predict the results of the Fontan operation, to choose an optimal configuration of TCPC and thus to reduce negative postoperative consequences. We propose a two-scale (1D3D) haemodynamic model of systemic circulation for a patient who has underwent Fontan surgical operation. We use CT and 4D flow MRI data to personalize the model. The model is tuned to patient’s data and is able to represent measured time-averaged flow rates at the inlets and outlets of TCPC, as well as pressure in TCPC for the patient in horizontal position.We demonstrate that changing to quiescent standing position leads to other patterns of blood flow in regional (TCPC) and global haemodynamics. This confirms clinical data on exercise intolerance of Fontan patients.
Funding statement: The study was performed at Marchuk Institute of Numerical Mathematics RAS and supported by the Russian Science Foundation (project 21-71-30023).
Acknowledgment
The authors thank Ksenia Slepova for her assistance in the TCPC domain segmentation and 3D mesh generation.
References
[1] A. Baretta, C. Corsini, W. Yang, I. E. Vignon-Clementel, A. L. Marsden, J. A. Feinstein, T. Y. Hsia, G. Dubini, F. Migliavacca, and G. Pennati, Modelling of Congenital Hearts Alliance (MOCHA) investigators. Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Philos. Trans. A Math. Phys. Engrg. Sci. 369 (2011), 4316–4330.10.1098/rsta.2011.0130Suche in Google Scholar
[2] C. Bertoglio, R. Nuñez, F. Galarce, et al., Relative pressure estimation from velocity measurements in blood flows: State-of-the-art and new approaches. Inter. J. Numer. Meth. Biomed. Engrg. 34 (2017), No. 2, e2925.10.1002/cnm.2925Suche in Google Scholar PubMed
[3] C. Corsini, C. Baker, E. Kung, S. Schievano, G. Arbia, A. Baretta, G. Biglino, F. Migliavacca, G. Dubini, G. Pennati, A. Marsden, I. Vignon-Clementel, A. Taylor, T. Y. Hsia, and A. Dorfman, Modeling of Congenital Hearts Alliance (MOCHA) Investigators. An integrated approach to patient-specific predictive modeling for single ventricle heart palliation. Comput. Meth. Biomech. Biomed. Engrg. 17 (2014), No. 14, 1572–1589.10.1080/10255842.2012.758254Suche in Google Scholar PubMed PubMed Central
[4] K. Desai, C. M. Haggerty, K. R. Kanter, et al., Haemodynamic comparison of a novel flow-divider Optiflo geometry and a traditional total cavopulmonary connection. Interact. Cardiovasc. Thorac. Surg. 17 (2013), No. 1, 1–7.10.1093/icvts/ivt099Suche in Google Scholar PubMed PubMed Central
[5] T. Dobroserdova, M. Olshanskii, and S. Simakov, Multiscale coupling of compliant and rigid walls blood flow models. Int. J. Numer. Meth. Fluids 82 (2016), No. 12, 799–817.10.1002/fld.4241Suche in Google Scholar
[6] P. Dyverfeldt, M. Bissell, A. J. Barker, et al., 4D flow cardiovascular magnetic resonance consensus statement. J. Cardiovasc. Magn. Reson 17 (2015), No. 1, 1–19.10.1186/s12968-015-0174-5Suche in Google Scholar PubMed PubMed Central
[7] T. Gamilov, J. Alastruey, and S. Simakov, Linear optimization algorithm for 1D hemodynamics parameter estimation. In: Proc. of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018. 2020, pp. 1845–1850.Suche in Google Scholar
[8] A. M. Ismailbaev and T. O. Astrakhantseva, Late results of the extracardiac Fontan procedure. Bulletin A. N. Bakuleva NMR-CCS RAMS 15 (2014), No. 6.Suche in Google Scholar
[9] E. S. J. Krner, H. J. Lamb, H.-M. J. Siebelink, S. C. Cannegieter, P. J. Van Den Boogaard, E. E. Van Der Wall, A. De Roos, and J. J. M. Westenberg, Pulse wave velocity and flow in the carotid artery versus the aortic arch: effects of aging. J. Magn. Reson. Imaging 40 (2014), No. 2, 287–293.10.1002/jmri.24470Suche in Google Scholar PubMed
[10] J. Liu, W. Yang, I. S. Lan, and A. L. Marsden, Fluid-structure interaction modeling of blood flow in the pulmonary arteries using the unified continuum and variational multiscale formulation. Mechanics Research Communications 107 (2020).10.1016/j.mechrescom.2020.103556Suche in Google Scholar PubMed PubMed Central
[11] A. L. Marsden, A. J. Bernstein, V. M. Reddy, S. C. Shadden, R. L. Spilker, F. P. Chan, C. A. Taylor, and J. A. Feinstein, Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. J. Thorac. Cardiovasc. Surg. 137 (2009), No. 2, 394–403.e2.10.1016/j.jtcvs.2008.06.043Suche in Google Scholar PubMed
[12] F. Migliavacca, R. Balossino, G. Pennati, G. Dubini, T. Y. Hsia, M. R. de Leval, E. L. Bove, Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J. Biomech. 39 (2006), No. 6, 1010–1020.10.1016/j.jbiomech.2005.02.021Suche in Google Scholar PubMed
[13] M. Monjezi, M. Ghoreyshi, M. S. Saidi, M. A. N. Navabi, and B. D. Firoozabadi, 3D-1D Simulation of Flow in Fontan Operation: Effects of Antegrade Flow on Flow Pulsations. Scientia Iranica 21 (2014), No. 4, 1378–1389.Suche in Google Scholar
[14] G. Pennati, C. Corsini, D. Cosentino, T. Y. Hsia, V. S. Luisi, G. Dubini, and F. Migliavacca, Boundary conditions of patient-specific fluid dynamics modelling of cavopulmonary connections: possible adaptation of pulmonary resistances results in a critical issue for a virtual surgical planning. Interface Focus 1 (2011), No. 3, 297–307.10.1098/rsfs.2010.0021Suche in Google Scholar PubMed PubMed Central
[15] V. P. Podzolkov, Actual problems of surgical treatment of congenital heart diseases with univen-tricular hemodynamics by the Fontan procedure. Bakoulev J. Cardiovasc. Diseases 19 (2018), No. 5, 625–636.10.24022/1810-0694-2018-19-5-625-636Suche in Google Scholar
[16] S. Simakov and A. Kholodov, Computational study of oxygen concentration in human blood under low frequency disturbances. Mathematical Models and Computer Simulations 1 (2009), No. 2, 283–295.10.1134/S2070048209020112Suche in Google Scholar
[17] S. Simakov, T. Gamilov, and Y. N. Soe, Computational study of blood flow in lower extremities under intense physical load. Russ. J. Numer. Anal. Math. Modelling 28 (2013), No. 5, 485–504.10.1515/rnam-2013-0027Suche in Google Scholar
[18] S. Simakov, Spatially averaged haemodynamic models for different parts of cardiovascular system. Russ. J. Numer. Anal. Math. Modelling 35 (2020), No. 5, 285–294.10.1515/rnam-2020-0024Suche in Google Scholar
[19] R. L. Spilker, J. A. Feinstein, D. W. Parker, V. M. Reddy, and C. A. Taylor, Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries. Ann. Biomed. Engrg. 35 (2007), No. 4, 546–559.10.1007/s10439-006-9240-3Suche in Google Scholar PubMed
[20] G. Troianowski, C. A. Taylor, J. A. Feinstein, and I. E. Vignon-Clementel, Three-dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data. J. Biomech. Engrg. 133 (2011), No. 11, 111006.10.1115/1.4005377Suche in Google Scholar PubMed
[21] P. M. Trusty, T. C. Slesnick, Z. A. Wei, et al., Fontan surgical planning: Previous accomplishments, current challenges, and future directions. J. Cardiovasc. Trans. Res. 11 (2018), 133–144.10.1007/s12265-018-9786-0Suche in Google Scholar PubMed PubMed Central
[22] A. Updegrove, N. M. Wilson, J. Merkow, H. Lan, A. L. Marsden, and S. C. Shadden, SimVascular: an open source pipeline for cardiovascular simulation. Ann. Biomed. Engrg. 45 (2017), No. 3, 525–541.10.1007/s10439-016-1762-8Suche in Google Scholar PubMed PubMed Central
[23] Yu. Vassilevski, M. Olshanskii, S. Simakov, A. Kolobov, and A. Danilov, Personalized Computational Hemodynamics. Models, Methods, and Applications for Vascular Surgery and Antitumor Therapy. Academic Press, 2020.Suche in Google Scholar
[24] D. A. de Zelicourt and V. Kurtcuoglu, Patient-specific surgical planning, where do we stand? The example of the Fontan procedure. Ann. Biomed. Engrg. 44 (2016), 174–186.10.1007/s10439-015-1381-9Suche in Google Scholar PubMed
[25] Advanced Numerical Instruments in 3D. https://sourceforge.net/projects/ani3d/Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Frontiers in mathematical modelling of the lipid metabolism under normal conditions and its alterations in heart diseases
- Two-scale haemodynamic modelling for patients with Fontan circulation
- Herd immunity levels and multi-strain influenza epidemics in Russia: a modelling study
- Numerical modelling of the transition of infected cells and virions between two lymph nodes in a stochastic model of HIV-1 infection
- Numerical evaluation of the effectiveness of coronary revascularization
Artikel in diesem Heft
- Frontmatter
- Frontiers in mathematical modelling of the lipid metabolism under normal conditions and its alterations in heart diseases
- Two-scale haemodynamic modelling for patients with Fontan circulation
- Herd immunity levels and multi-strain influenza epidemics in Russia: a modelling study
- Numerical modelling of the transition of infected cells and virions between two lymph nodes in a stochastic model of HIV-1 infection
- Numerical evaluation of the effectiveness of coronary revascularization