Home Frontiers in mathematical modelling of the lipid metabolism under normal conditions and its alterations in heart diseases
Article
Licensed
Unlicensed Requires Authentication

Frontiers in mathematical modelling of the lipid metabolism under normal conditions and its alterations in heart diseases

  • Gennady A. Bocharov EMAIL logo , Dmitry S. Grebennikov and Rostislav S. Savinkov
Published/Copyright: November 8, 2021

Abstract

Pathophysiology of ischemic heart disease is a complex phenomenon determined by the interaction of multiple processes including the inflammatory, immunological, infectious, mechanical, biochemical and epigenetic ones. A predictive clinically relevant modelling of the entire trajectory of the human organism, from the initial alterations in lipid metabolism through to atherosclerotic plaque formation and finally to the pathologic state of the ischemic heart disease, is an open insufficiently explored problem. In the present review, we consider the existing mathematical frameworks which are used to describe, analyze and predict the dynamics of various processes related to cardiovascular diseases at the molecular, cellular, tissue, and holistic human organism level. The mechanistic, statistical and machine learning models are discussed in detail with special focus on the underlying assumptions and their clinical relevance. All together, they provide a solid computational platform for further expansion and tailoring for practical applications.

Funding statement: The reported study was supported by Moscow Center of Fundamental and Applied Mathematics (agreement with the Ministry of Education and Science of the Russian Federation No. 075-15-2019-1624).

Acknowledgment

We thank Victor Sokolov for critically reading the manuscript and for valuable comments.

References

[1] G. Abi Younes and N. El Khatib, Mathematical modeling of atherogenesis: Atheroprotective role of HDL. J. Theor. Biology 529 (2021), 110855.10.1016/j.jtbi.2021.110855Search in Google Scholar PubMed

[2] A. Bekkar, A. Estreicher, A. Niknejad, C. Casals-Casas, A. Bridge, I. Xenarios, J. Dorier, and I. Crespo, Expert curation for building network-based dynamical models: a case study on atherosclerotic plaque formation. Database 2018 (2018), bay031.10.1093/database/bay031Search in Google Scholar PubMed PubMed Central

[3] B. S. Bhattacharya, P. K. Sweby, A.-M. Minihane, K. G. Jackson, and M. J. Tindall, A mathematical model of the sterol regulatory element binding protein 2 cholesterol biosynthesis pathway. J. Theor. Biology 349 (2014), 150–162.10.1016/j.jtbi.2014.01.013Search in Google Scholar PubMed PubMed Central

[4] B. S. Bhattacharya, Mathematical modelling of low density lipoprotein metabolism intracellular cholesterol regulation. Ph.D. Thesis. University of Reading, 2011.Search in Google Scholar

[5] M. Blencowe, I. S. Ahn, Z. Saleem, H. Luk, I. Cely, V.-P. Mäkinen, Y. Zhao, and X. Yang, Gene networks and pathways for plasma lipid traits via multitissue multiomics systems analysis. J. Lipid Research 62 (2021), 100019.10.1194/jlr.RA120000713Search in Google Scholar PubMed PubMed Central

[6] J. Borén, M.-R. Taskinen, and M. Adiels, Kinetic studies to investigate lipoprotein metabolism: Key Symposium: Kinetic studies to investigate lipoprotein metabolism. J. Intern. Medicine 271 (2012), 166–173.10.1111/j.1365-2796.2011.02497.xSearch in Google Scholar PubMed

[7] L. Chen, Y. Yao, C. Jin, S. Wu, Q. Liu, J. Li, Y. Ma, Y. Xu, and Y. Zhong, Integrative genomic analysis identified common regulatory networks underlying the correlation between coronary artery disease and plasma lipid levels. BMC Cardiovascular Disorders 19 (2019), 310.10.1186/s12872-019-01271-9Search in Google Scholar PubMed PubMed Central

[8] M. Cilla, E. Peña, and M. A. Martínez, Mathematical modelling of atheroma plaque formation and development in coronary arteries. J. Royal Soc. Interface 11 (2014), 20130866.10.1098/rsif.2013.0866Search in Google Scholar PubMed PubMed Central

[9] M. Dabagh, P. Jalali, and J. M. Tarbell, The transport of LDL across the deformable arterial wall: the effect of endothelial cell turnover and intimal deformation under hypertension. Amer. J. Physiology-Heart Circ. Physiol. 297 (2009), H983–H996.10.1152/ajpheart.00324.2009Search in Google Scholar PubMed PubMed Central

[10] G. De Nisco, P. Zhang, K. Calò, X. Liu, R. Ponzini, C. Bignardi, G. Rizzo, X. Deng, D. Gallo, and U. Morbiducci, What is needed to make low-density lipoprotein transport in human aorta computational models suitable to explore links to atherosclerosis? Impact of initial and inflow boundary conditions. J. Biomechanics 68 (2018), 33–42.10.1016/j.jbiomech.2017.12.009Search in Google Scholar PubMed

[11] A. Deyranlou, H. Niazmand, and M.-R. Sadeghi, Low-density lipoprotein accumulation within a carotid artery with multilayer elastic porous wall: fluid–structure interaction and non-Newtonian considerations. J. Biomechanics 48 (2015), 2948–2959.10.1016/j.jbiomech.2015.08.002Search in Google Scholar PubMed

[12] P. Dua, E. Hawkins, and Ph. van der Graaf, A tutorial on target-mediated drug disposition (TMDD) models. CPT: Pharmaco-metrics & Systems Pharmacology 4 (2015), 324–337.10.1002/psp4.41Search in Google Scholar PubMed PubMed Central

[13] A. Friedman and W. Hao, A mathematical model of atherosclerosis with reverse cholesterol transport and associated risk factors. Bulletin Math. Biology 77 (2015), 758–781.10.1007/s11538-014-0010-3Search in Google Scholar PubMed

[14] K. Gadkar, J. Lu, S. Sahasranaman, J. Davis, N. A. Mazer, and S. Ramanujan, Evaluation of HDL-modulating interventions for cardiovascular risk reduction using a systems pharmacology approach. J. Lipid Research 57 (2016), 46–55.10.1194/jlr.M057943Search in Google Scholar PubMed PubMed Central

[15] C. Gille, C. Bölling, A. Hoppe, S. Bulik, S. Hoffmann, K. Hübner, A. Karlstädt, R. Ganeshan, M. König, K. Rother, M. Weidlich, J. Behre, and H.-G. Holzhütter, HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Molecular Systems Biology 6 (2010), 411.10.1038/msb.2010.62Search in Google Scholar PubMed PubMed Central

[16] M. Guo, Y. Cai, X. Yao, and Z. Li, Mathematical modeling of atherosclerotic plaque destabilization: Role of neovascularization and intraplaque hemorrhage. J. Theor. Biology 450 (2018), 53–65.10.1016/j.jtbi.2018.04.031Search in Google Scholar PubMed

[17] M. Iasiello, K. Vafai, A. Andreozzi, and N. Bianco, Analysis of non-Newtonian effects on Low-Density Lipoprotein accumulation in an artery. J. Biomechanics 49 (2016), 1437–1446.10.1016/j.jbiomech.2016.03.017Search in Google Scholar PubMed

[18] L. Iop, Toward the effective bioengineering of a pathological tissue for cardiovascular disease modeling: Old strategies and new frontiers for prevention, diagnosis, and therapy. Frontiers in Cardiovascular Medicine 7 (2021), 373.10.3389/fcvm.2020.591583Search in Google Scholar PubMed PubMed Central

[19] K. Jesionek and M. Kostur, Low-density lipoprotein accumulation within the right coronary artery walls for physiological and hypertension conditions. Biosystems 177 (2019), 39–43.10.1016/j.biosystems.2018.10.017Search in Google Scholar PubMed

[20] S. Kenjereš, J. P. van der Krieke, and C. Li, Endothelium resolving simulations of wall shear-stress dependent mass transfer of LDL in diseased coronary arteries. Computers in Biology and Medicine 114 (2019), 103453.10.1016/j.compbiomed.2019.103453Search in Google Scholar PubMed

[21] P. Langfelder and S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9 (2008), 559.10.1186/1471-2105-9-559Search in Google Scholar PubMed PubMed Central

[22] M. Lieberman and A. D. Marks, Marks’ Basic Medical Biochemistry: A Clinical Approach. Lippincott Williams & Wilkins, 2009, Google-Books-ID: HHK7S7t47BEC.Search in Google Scholar

[23] C. Liu, W. J. Zong, A. H. Zhang, H. M. Zhang, Y. H. Luan, H. Sun, H. X. Cao, and X. J. Wang, Lipidomic characterisation discovery for coronary heart disease diagnosis based on high-throughput ultra-performance liquid chromatography and mass spectrometry. RSC Advances 8 (2018), 647–654.10.1039/C7RA09353ESearch in Google Scholar

[24] J. Lu, K. Hübner, M. N. Nanjee, E. A. Brinton, and N. A. Mazer, An in-silico model of lipoprotein metabolism and kinetics for the evaluation of targets and biomarkers in the reverse cholesterol transport pathway. PLoS Comput. Biology 10 (2014), e1003509.10.1371/journal.pcbi.1003509Search in Google Scholar PubMed PubMed Central

[25] L. Mendoza and I. Xenarios, A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theor. Biology Medical Modelling 3 (2006), 13.10.1186/1742-4682-3-13Search in Google Scholar PubMed PubMed Central

[26] A. E. Morgan and M. T. Mc Auley, Cholesterol homeostasis: An in silico investigation into how aging disrupts its key hepatic regulatory mechanisms. Biology 9 (2020), 314.10.3390/biology9100314Search in Google Scholar PubMed PubMed Central

[27] F. Ottosson, P. E. Khoonsari, M. J. Gerl, K. Simons, O. Melander, and C. Fernandez, A plasma lipid signature predicts incident coronary artery disease. Int. J. Cardiol. 331 (2021), 249–254.10.1016/j.ijcard.2021.01.059Search in Google Scholar PubMed

[28] Y. Paalvast, J. A. Kuivenhoven, and A. K. Groen, Evaluating computational models of cholesterol metabolism. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids 1851 (2015), 1360–1376.10.1016/j.bbalip.2015.05.008Search in Google Scholar PubMed

[29] A. Parton, V. McGilligan, M. Chemaly, M. O’Kane, and S. Watterson, New models of atherosclerosis and multi-drug therapeutic interventions. Bioinformatics 35 (2019), 2449–2457.10.1093/bioinformatics/bty980Search in Google Scholar PubMed

[30] R. Piemjaiswang, Y. Ding, Y. Feng, P. Piumsomboon, and B. Chalermsinsuwan, Effect of transport parameters on atherosclerotic lesion growth: A parameter sensitivity analysis. Computer Methods and Programs in Biomedicine 199 (2021), 105904.10.1016/j.cmpb.2020.105904Search in Google Scholar PubMed

[31] F. Pool, P. K. Sweby, and M. J. Tindall, An integrated mathematical model of cellular cholesterol biosynthesis and lipoprotein metabolism. Processes 6 (2018), 134.10.3390/pr6080134Search in Google Scholar

[32] M. Rezaei, N. Fakhri, Y. Pasdar, M. Moradinazar, and F. Najafi, Modeling the risk factors for dyslipidemia and blood lipid indices: Ravansar cohort study. Lipids in Health and Disease 19 (2020), 176.10.1186/s12944-020-01354-zSearch in Google Scholar PubMed PubMed Central

[33] M. Roustaei, M. Reza Nikmaneshi, and B. Firoozabadi, Simulation of Low Density Lipoprotein (LDL) permeation into multilayer coronary arterial wall: Interactive effects of wall shear stress and fluid-structure interaction in hypertension. J. Biomechanics 67 (2018), 114–122.10.1016/j.jbiomech.2017.11.029Search in Google Scholar PubMed

[34] L. Shu, Y. Zhao, Z. Kurt, S. G. Byars, T. Tukiainen, J. Kettunen, L. D. Orozco, M. Pellegrini, A. J. Lusis, S. Ripatti, B. Zhang, M. Inouye, V.-P. Mäkinen, and X. Yang, Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC Genomics 17 (2016), 874.10.1186/s12864-016-3198-9Search in Google Scholar PubMed PubMed Central

[35] T. Silva, W. Jäger, M. Neuss-Radu, and A. Sequeira, Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability. J. Theor. Biology 496 (2020), 110229.10.1016/j.jtbi.2020.110229Search in Google Scholar PubMed

[36] V. Sokolov, G. Helmlinger, C. Nilsson, K. Zhudenkov, S. Skrtic, B. Hamrén, K. Peskov, E. Hurt-Camejo, and R. Jansson-Löfmark, Comparative quantitative systems pharmacology modeling of anti-PCSK9 therapeutic modalities in hypercholesterolemia. J. Lipid Research 60 (2019), 1610–1621.10.1194/jlr.M092486Search in Google Scholar PubMed PubMed Central

[37] M. Soleimani, A. Haverich, and P. Wriggers, Mathematical modeling and numerical simulation of atherosclerosis based on a novel surgeon’s view. Archives of Computational Methods in Engineering (2021).10.1007/s11831-021-09623-5Search in Google Scholar PubMed PubMed Central

[38] J. V. Soulis, D. K. Fytanidis, V. C. Papaioannou, and G. D. Giannoglou, Wall shear stress on LDL accumulation in human RCAs. Medical Engineering & Physics 32 (2010), 867–877.10.1016/j.medengphy.2010.05.011Search in Google Scholar PubMed

[39] J. V. Soulis, M. Dimitrakopoulou, and G. D. Giannoglou, Low Density Lipoprotein transport in the normal human aortic arch. Hippokratia 18 (2014), 221–225.Search in Google Scholar

[40] N. Sun, N. B. Wood, A. D. Hughes, S. A. Thom, and X. X. Yun, Effects of transmural pressure and wall shear stress on LDL accumulation in the arterial wall: a numerical study using a multilayered model. Amer. J. Physiology-Heart Circ. Physiol. 292 (2007), H3148–H3157.10.1152/ajpheart.01281.2006Search in Google Scholar PubMed

[41] M. P. Thon, A. Hemmler, A. Glinzer, M. Mayr, M. Wildgruber, A. Zernecke-Madsen and M. W. Gee, A multiphysics approach for modeling early atherosclerosis. Biomechanics and Modeling in Mechanobiology 17 (2018), 617–644.10.1007/s10237-017-0982-7Search in Google Scholar PubMed

[42] M. P. Thon, M. R. Myerscough, and M. W. Gee, A spatially resolved and quantitative model of early atherosclerosis. Bulletin Math. Biology 81 (2019), 4022–4068.10.1007/s11538-019-00646-5Search in Google Scholar PubMed

[43] M. J. Tindall, J. A. D. Wattis, B. J. O’Malley, L. Pickersgill, and K.G. Jackson, A continuum receptor model of hepatic lipoprotein metabolism. J. Theor. Biology 257 (2009), 371–384.10.1016/j.jtbi.2008.11.016Search in Google Scholar PubMed

[44] M. K. Toroghi, W. R. Cluett, and R. Mahadevan, A multi-scale model for low-density lipoprotein cholesterol (LDL-C) regulation in the human body: Application to quantitative systems pharmacology. Computers & Chemical Engineering 130 (2019), 106507.10.1016/j.compchemeng.2019.06.032Search in Google Scholar

[45] J. A. D. Wattis, B. O’Malley, H. Blackburn, L. Pickersgill, J. Panovska, H. M. Byrne, and K. G. Jackson, Mathematical model for low density lipoprotein (LDL) endocytosis by hepatocytes. Bulletin Math. Biology 70 (2008), 2303–2333.10.1007/s11538-008-9347-9Search in Google Scholar PubMed PubMed Central

[46] R.-X. Xu and Y.-J. Wu, Lipid-Modifying Drugs: Pharmacology and Perspectives. In: Coronary Artery Disease: Therapeutics and Drug Discovery (Ed. M. Wang), Vol. 1177. Springer, Singapore, 2020, pp. 133–148.10.1007/978-981-15-2517-9_5Search in Google Scholar PubMed

[47] S. Xu, D. Kamato, P. J. Little, S. Nakagawa, J. Pelisek, and Z. G. Jin, Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics. Pharmacology & Therapeutics 196 (2019), 15–43.10.1016/j.pharmthera.2018.11.003Search in Google Scholar PubMed PubMed Central

[48] L. Yang, L. Wang, Y. Deng, L. Sun, B. Lou, Z. Yuan, Y. Wu, B. Zhou, J. Liu, and J. She, Serum lipids profiling perturbances in patients with ischemic heart disease and ischemic cardiomyopathy. Lipids in Health and Disease 19 (2020), 89.10.1186/s12944-020-01269-9Search in Google Scholar PubMed PubMed Central

Received: 2021-04-30
Revised: 2021-07-20
Accepted: 2021-08-17
Published Online: 2021-11-08
Published in Print: 2021-11-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/rnam-2021-0021/pdf
Scroll to top button