Startseite Stability analysis of implicit semi-Lagrangian methods for numerical solution of non-hydrostatic atmospheric dynamics equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Stability analysis of implicit semi-Lagrangian methods for numerical solution of non-hydrostatic atmospheric dynamics equations

  • Vladimir V. Shashkin EMAIL logo
Veröffentlicht/Copyright: 4. Oktober 2021

Abstract

The stability of implicit semi-Lagrangian schemes for time-integration of the non-hydrostatic atmosphere dynamics equations is analyzed in the present paper. The main reason for the instability of the considered class of schemes is the semi-Lagrangian advection of stratified thermodynamic variables coupled to the fixed point iteration method used to solve the implicit in time upstream trajectory computation problem. We identify two types of unstable modes and obtain stability conditions in terms of the scheme parameters. Stabilization of sound modes requires the use of a pressure reference profile and time off-centering. Gravity waves are stable only for an even number of fixed point method iterations. The maximum time step is determined by inverse buoyancy frequency in the case when the reference profile of the potential temperature is not used. Generally, applying time off-centering and reference profile to pressure variable is necessary for stability. Using reference profile for potential temperature and an even number of the iterations allows one to significantly increase the maximum time-step value.

MSC 2010: 65A01; 65B02

Acknowledgment

Author is grateful to Mikhail Tolstykh, Gordey Goyman, Rostislav Fadeev, and Nikolay Iakovlev from INM RAS for their comments on the article.

  1. Funding: The work was carried out at Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences with support of the Russian Science Foundation grant No. 19-71-00160.

A Explicit formula for the Kth approximation in an iterative process

The explicit formula for Kth approximation in the iterative process (3.7) with the initial guess ψ(0) = ψn is written as

ψ(K)ψn=k=0K1QkCψn (A.1)

where C = R – (IQ) = (IαB)–1 Δt(A + B).

One can multiply the sum in equation (A.1) by the identity matrix in the form I = (IQ)–1(IQ) and use (IQ)(I + Q + ... + QK–1) = (IQK). The result will be

ψ(K)=ψn+(IQ)1(IQK)Cψn. (A.2)

Then, using ψn + (IQ)–1C = (IαAαB)–1(I + βA + βB)ψn = ψn+1 one can obtain the following equality

ψ(K)=ψn+1(IQ)1QKCψn (A.3)

which is correct independent of the iterative process (3.7) convergence.

One can expand equation (A.3) in the terms of A and B matrices and derive equation (3.9):

ψ(K)=(IαAαB)1(I+βA+βB)Q~KΔt(A+B)ψn (A.4)

where = αA(IβB)–1.

References

[1] A. Arakawa and V. Lamb, Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics: Advances in Research and Applications 17 (1977), 173–265.10.1016/B978-0-12-460817-7.50009-4Suche in Google Scholar

[2] T. Benacchio and N. Wood, Semi-implicit semi-Lagrangian modelling of the atmosphere: A Met Office perspective. Communications in Applied and Industrial Mathematics 7 (2016), No. 3, 4–25.10.1515/caim-2016-0020Suche in Google Scholar

[3] R. Bubnová, G. Hello, P. Bénard, and J.-F. Geleyn, Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system. Mon. Wea. Rev. 123 (1995), 515–535.10.1175/1520-0493(1995)123<0515:IOTFEE>2.0.CO;2Suche in Google Scholar

[4] P. Bénard, Stability of semi-implicit and iterative centered-implicit time discretizations for various equation systems used in NWP. Mon. Wea. Rev. 131 (2003), No. 10, 2479–2491.10.1175/1520-0493(2003)131<2479:SOSAIC>2.0.CO;2Suche in Google Scholar

[5] E. Cordero, N. Wood, and A. Staniforth, Impact of semi-Lagrangian trajectories on the discrete normal modes of a non-hydrostatic vertical-column model. Quart. J. Roy. Met. Soc. 131 (2005), No. 605, 93–108.10.1256/qj.04/34Suche in Google Scholar

[6] J. Côté, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, The operational CMC–MRB global environmental multiscale (GEM) model, Part I. Design considerations and formulation. Mon. Wea. Rev. 126 (1998), 1373–1395.10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2Suche in Google Scholar

[7] D. Durran, Numerical Methods for Fluid Dynamics with Applications to Geophysics. Springer Verlag, New York, 2010.10.1007/978-1-4419-6412-0Suche in Google Scholar

[8] L. W. Horowitz, S. Walters, D. L. Mauzerall, L. K. Emmons, P. J. Rasch, C. Granier, X. Tie, J.-F.Lamarque, M. G. Schultz, G. S. Tyndall, J. J. Orlando, and G. P. Brasseur, A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. J. Geoph. Res. 108 (2004).10.1029/2002JD002853Suche in Google Scholar

[9] M. Hortal, The development and testing of a new two-time-level semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model. Quart. J. Roy. Met. Soc. 128 (2002), 1671–1688.10.1002/qj.200212858314Suche in Google Scholar

[10] S. Husain, C. Girard, A. Qaddouri, and A. Plante, A new dynamical core of the Global Environmental Multiscale (GEM) model with a height-based terrain-following vertical coordinate. Mon. Wea. Rev. 147 (2019), No. 7, 2555–2578.10.1175/MWR-D-18-0438.1Suche in Google Scholar

[11] T. Melvin, M. Dubal, N. Wood, A. Staniforth, and M. Zerroukat, An inherently mass-conserving iterative semi-implicit semi-Lagrangian discretization of the non-hydrostatic vertical-slice equations. Quart. J. Roy. Met. Soc. 136 (2010), No. 648, 799–814.10.1002/qj.603Suche in Google Scholar

[12] A. Robert, Integration of a spectral model of the atmosphere by the implicit method. In: Proc. of WMO/IUGG Symp. on Numerical Weather Prediction, 1969. Tokyo, Japan Meteorol. Agency, 1969, pp. 19–24.Suche in Google Scholar

[13] A. Robert, T. Yee, and H. Ritchie, A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models. Mon. Wea. Rev. 113 (1985), 388–394.10.1175/1520-0493(1985)113<0388:ASLASI>2.0.CO;2Suche in Google Scholar

[14] C. Schär, D. Leuenberger, O. Fuhrer, D. Lüthi, and C. Girard, A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Wea. Rev. 130 (2002), No. 10, 2459–2480.10.1175/1520-0493(2002)130<2459:ANTFVC>2.0.CO;2Suche in Google Scholar

[15] A. J. Simmons, B. J. Hoskins, and D. M. Burridge, Stability of the semi-implicit method of time integration. Mon. Wea. Rev. 106 (1978), No. 3, 405–412.10.1175/1520-0493(1978)106<0405:SOTSIM>2.0.CO;2Suche in Google Scholar

[16] A. Staniforth and J. Côté, Semi-Lagrangian integration schemes for atmospheric models – A review. Mon. Wea. Rev. 119 (1991), 2206–2223.10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2Suche in Google Scholar

[17] C. Temperton, An overview of recent developments in numerical methods for atmospheric modelling. In: Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling. ECMWF, 1998, pp. 1–11.Suche in Google Scholar

[18] C. Temperton, M. Hortal, and A. Simmons, A two-time-level semi-Lagrangian spec\-tral global model. Quart. J. Roy. Met. Soc. 127 (2001), 111–129.10.1002/qj.49712757107Suche in Google Scholar

[19] J. Thuburn, M. Zerroukat, N. Wood, and A. Staniforth, Coupling a mass-conserving semi-Lagrangian scheme (SLICE) to a semi-implicit discretization of the shallow-water equations: minimizing the dependence on a reference atmosphere. Quart. J. Roy. Met. Soc. 136 (2010), No. 646, 146–154.10.1002/qj.517Suche in Google Scholar

[20] J. Thuburn and T. J. Woollings, Vertical discretizations for compressible Euler equation atmospheric models giving optimal representation of normal modes. J. Comput. Phys. 203 (2005), 386–404.10.1016/j.jcp.2004.08.018Suche in Google Scholar

[21] M. Tolstykh, V. Shashkin, R. Fadeev, and G. Goyman, Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core. Geoscientific Model Development 10 (2017), No. 5, 1961–1983.10.5194/gmd-10-1961-2017Suche in Google Scholar

[22] M. Wong, W. Skamarock, P. Lauritzen, J. Klemp, and R. Stull, Testing of a cell-integrated semi-Lagrangian semi-implicit nonhydrostatic atmospheric solver (CSLAM-NH) with idealized orography. Mon. Wea. Rev. 143 (2015), No. 4, 1382–1398.10.1175/MWR-D-14-00059.1Suche in Google Scholar

[23] N. Wood, A. Staniforth, A. White, T. Allen, M. Diamantakis, M. Gross, T. Melvin, C. Smith, S. Vosper, M. Zerroukat, and J. Thuburn, An inherently mass-conserving semi-implicit semi-Lagrangian discretisation of the deep-atmosphere global nonhydrostatic equations. Quart. J. Roy. Met. Soc. 140 (2014), 1505–1520.10.1002/qj.2235Suche in Google Scholar

[24] M. Zerroukat and T. Allen, SLIC: A semi-Lagrangian implicitly corrected method for solving the compressible Euler equations. J. Comput. Phys. 421 (2020), 109739.10.1016/j.jcp.2020.109739Suche in Google Scholar

Received: 2021-05-27
Accepted: 2021-05-31
Published Online: 2021-10-04
Published in Print: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2021-0020/pdf
Button zum nach oben scrollen