Abstract
This work presents an overview of techniques that enable the construction of collocated finite volume method for complex multi-physics models in multiple domains. Each domain is characterized by the properties of heterogeneous media and features a distinctive multi-physics model. Coupling together systems of equations, corresponding to multiple unknowns, results in a vector flux. The finite volume method requires continuity of intradomain and interdomain vector fluxes. The continuous flux is derived using an extension of the harmonic averaging point concept. Often, the collocated coupling of the equations results in a saddle-point problem subject to inf-sup stability issues. These issues are addressed by the eigen-splitting of indefinite matrix coefficients encountered in the flux expression. The application of the techniques implemented within INMOST platform to hydraulic fracturing problem is demonstrated.
Acknowledgment
The author would like to thank Igor Konshin for help in the preparation of this article.
Funding: The study was supported by the Russian Science Foundation through the grant 18-71-10111.
References
[1] I. Ambartsumyan, E. Khattatov, T. Nguyen, and I. Yotov, Flow and transport in fractured poroelastic media. GEM - Int. J. Geomathematics10 (2019), No. 1, 11.10.1007/s13137-019-0119-5Suche in Google Scholar
[2] K. Aziz and A. Settari, Petroleum Reservoir Simulation. Applied Science Publishers, 1979.Suche in Google Scholar
[3] R. L. Berge, I. Berre, E. Keilegavlen, J. M. Nordbotten, and B. Wohlmuth, Finite volume discretization for poroelastic media with fractures modeled by contact mechanics. Int. J. Numer. Meth. Engrg. 121 (2020), No. 4, 644–663.10.1002/nme.6238Suche in Google Scholar
[4] M. A. Biot, General theory of three-dimensional consolidation. J. Applied Physics12 (1941), No. 2, 155–164.10.1063/1.1712886Suche in Google Scholar
[5] J. M. Carcione, Wave propagation in anisotropic, saturated porous media: Plane-wave theory and numerical simulation. J. Acoustical Soc. America99 (1996), No. 5, 2655–2666.10.1121/1.414809Suche in Google Scholar
[6] N. Castelletto, J. A. White, and M. Ferronato, Scalable algorithms for three-field mixed finite element coupled poromechanics. J. Comput. Physics327 (2016), 894–918.10.1016/j.jcp.2016.09.063Suche in Google Scholar
[7] J. Choo and S. Lee, Enriched Galerkin finite elements for coupled poromechanics with local mass conservation. Comput. Meth. Appl. Mech. Engrg. 341 (2018), 311–332.10.1016/j.cma.2018.06.022Suche in Google Scholar
[8] O. Coussy, Poromechanics. John Wiley & Sons, 2004.10.1002/0470092718Suche in Google Scholar
[9] R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods. Handbook of Numerical Analysis7 (2000), 713–1018.10.1016/S1570-8659(00)07005-8Suche in Google Scholar
[10] C. A. Felippa and E. Oñate, Stress, strain and energy splittings for anisotropic elastic solids under volumetric constraints. Computers & Structures81 (2003), No. 13, 1343–1357.10.1016/S0045-7949(03)00060-9Suche in Google Scholar
[11] B. Flemisch, K. M. Flornes, K. Lie, and A. Rasmussen, OPM: The Open Porous Media Initiative, AGU Fall Meeting Abstracts, 2011.Suche in Google Scholar
[12] B. Ganis, R. Liu, B. Wang, M. F. Wheeler, and I. Yotov, Multiscale modeling of flow and geomechanics. Radon Series on Computational and Applied Mathematics (2013), 165–204.10.1515/9783110282245.165Suche in Google Scholar
[13] D. Garagash and E. Detournay, The tip region of a fluid-driven fracture in an elastic medium. J. Appl. Mech. 67 (2000), No. 1, 183–192.10.1115/1.321162Suche in Google Scholar
[14] T. T. Garipov, M. Karimi-Fard, and H. A. Tchelepi, Discrete fracture model for coupled flow and geomechanics. Computational Geosciences20 (2016), No. 1, 149–160.10.1007/s10596-015-9554-zSuche in Google Scholar
[15] F. J. Gaspar, F. J. Lisbona, and P. N. Vabishchevich, Staggered grid discretizations for the quasi-static Biot’s consolidation problem. Appl. Numer. Math. 56 (2006), No. 6, 888–898.10.1016/j.apnum.2005.07.002Suche in Google Scholar
[16] H. T. Honório, C. R. Maliska, M. Ferronato, and C. Janna, A stabilized element-based finite volume method for poroelastic problems. J. Comput. Physics364 (2018), 49–72.10.1016/j.jcp.2018.03.010Suche in Google Scholar
[17] M. Karimi-Fard, L. J. Durlofsky, and K. Aziz, An efficient discrete fracture model applicable for general purpose reservoir simulators. In: SPE Reservoir Simulation Symposium, 2003, Society of Petroleum Engineers.10.2118/79699-MSSuche in Google Scholar
[18] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow. Gordon & Breach, New York, 1969.Suche in Google Scholar
[19] A. Léo, E. Robert, and H. Raphaèl, A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media. In: Comptes Rendus Mathematique. Elsevier France, Paris, 2009.Suche in Google Scholar
[20] R. Liu, M. F. Wheeler, C. N. Dawson, and R. Dean, Modeling of convection-dominated thermoporomechanics problems using incomplete interior penalty Galerkin method. Comput. Meth. Appl. Mech. Engrg. 198 (2009), No. 9-12, 912–919.10.1016/j.cma.2008.11.012Suche in Google Scholar
[21] P. Luo, C. Rodrigo, F. J. Gaspar, and C. W. Oosterlee, Multigrid method for nonlinear poroelasticity equations. Computing and Visualization in Science17 (2015), No. 5, 255–265.10.1007/s00791-016-0260-8Suche in Google Scholar
[22] A. Naumovich, On finite volume discretization of the three-dimensional Biot poroelasticity system in multilayer domains. Comput. Meth. Appl. Math. 6 (2006), No. 3, 306–325.10.2478/cmam-2006-0017Suche in Google Scholar
[23] J. M. Nordbotten, Stable cell-centered finite volume discretization for Biot equations. SIAM J. Numer. Analysis54 (2016), No. 2, 942–968.10.1137/15M1014280Suche in Google Scholar
[24] D. W. Peaceman, Interpretation of well-block pressures in numerical reservoir simulation (includes associated paper 6988). Society of Petroleum Engineers J. 18 (1978), No. 3, 183–194.10.2118/6893-PASuche in Google Scholar
[25] M. Preisig and J. H. Prévost, Stabilization procedures in coupled poromechanics problems: A critical assessment. Int. J. Numerical Analytical Methods in Geomechanics35 (2011), No. 11, 1207–1225.10.1002/nag.951Suche in Google Scholar
[26] C. Rodrigo, F. J. Gaspar, X. Hu, and L. T. Zikatanov, Stability and monotonicity for some discretizations of the Biot’s consolidation model. Comput. Meth. Appl. Mech. Engrg. 298 (2016), 183–204.10.1016/j.cma.2015.09.019Suche in Google Scholar
[27] A. Settari and K. Aziz, Use of irregular grid in reservoir simulation. Society of Petroleum Engineers Journal, 12 (1972), No. 2, 103–114.10.2118/3174-PASuche in Google Scholar
[28] S. A. Shapiro, C. Dinske, and J. Kummerow, Probability of a given-magnitude earthquake induced by a fluid injection. Geophysical Research Letters34 (2007), No. 22.10.1029/2007GL031615Suche in Google Scholar
[29] I. V. Sokolova, M. G. Bastisya, and H. Hajibeygi, Multiscale finite volume method for finite volume-based simulation of poroelasticity. J. Comput. Phys. 379 (2019), 309–324.10.1016/j.jcp.2018.11.039Suche in Google Scholar
[30] I. V. Sokolova and H. Hajibeygi, Multiscale finite volume method for finite volume-based poromechanics simulations. In: ECMOR XVI - 16th European Conference on the Mathematics of Oil Recovery, 2018, pp. 1–13.10.3997/2214-4609.201802252Suche in Google Scholar
[31] M. Ţene, S. B. M. Bosma, M. S. Al Kobaisi, and H. Hajibeygi, Projection-based embedded discrete fracture model (pEDFM). Advances in Water Resources105 (2017), 205–216.10.1016/j.advwatres.2017.05.009Suche in Google Scholar
[32] K. M. Terekhov, B. T. Mallison, and H. A. Tchelepi, Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem. J. Comput. Physics330 (2017), 245–267.10.1016/j.jcp.2016.11.010Suche in Google Scholar
[33] K. M. Terekhov and H. A. Tchelepi, Cell-centered finite-volxume method for elastic deformation of heterogeneous media with full-tensor properties. J. Comput. Applied Math. 364 (2020), 112331.10.1016/j.cam.2019.06.047Suche in Google Scholar
[34] K. M. Terekhov and Yu. V. Vassilevski, INMOST parallel platform for mathematical modeling and applications. In: Russian Supercomputing Days, 2018, 230–241.10.1007/978-3-030-05807-4_20Suche in Google Scholar
[35] K. M. Terekhov and Yu. V. Vassilevski, Finite volume method for coupled subsurface flow problems, I: Darcy problem. J. Comput. Physics395 (2019), 298–306.10.1016/j.jcp.2019.06.009Suche in Google Scholar
[36] K. M. Terekhov and Yu. V. Vassilevski, Mesh modification and adaptation within INMOST programming platform. In: Numerical Geometry, Grid Generation and Scientific Computing. Springer, 2019.10.1007/978-3-030-23436-2_18Suche in Google Scholar
[37] K. M. Terekhov, Cell-centered finite-volume method for heterogeneous anisotropic poromechanics problem. J. Comput. Appl. Math. 365 (2020), 112357.10.1016/j.cam.2019.112357Suche in Google Scholar
[38] Yu. Vassilevski, I. Konshin, G. Kopytov, and K. Terekhov, INMOST — a software platform and a graphical environment for development of parallel numerical models on general meshes. Moscow State Univ. Publ., Moscow, 2013 (in Russian).Suche in Google Scholar
[39] Yu. Vassilevski, K. Terekhov, K. Nikitin, and I. Kapyrin, Parallel Finite Volume Computation on General Meshes. Springer, Cham, 2020. URL: https://www.springer.com/gp/book/9783030472313.10.1007/978-3-030-47232-0Suche in Google Scholar
[40] M. Wheeler, G. Xue, and I. Yotov, A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra. Numerische Mathematik121 (2012), No. 1, 165–204.10.1007/s00211-011-0427-7Suche in Google Scholar
[41] H. C. Yoon and J. Kim, Spatial stability for the monolithic and sequential methods with various space discretizations in poroelasticity. Int. J. Numer. Meth. Engrg. 114 (2018), No. 7, 694–718.10.1002/nme.5762Suche in Google Scholar
[42] O. C. Zienkiewicz, The Finite Element Method. McGraw-Hill, London, 1977.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Methods of variational data assimilation with application to problems of hydrothermodynamics of marine water areas
- Mathematical immunology: from phenomenological to multiphysics modelling
- Iterative solution methods for elliptic boundary value problems
- Multi-physics flux coupling for hydraulic fracturing modelling within INMOST platform
- Tensor decompositions and rank increment conjecture
- Global optimization based on TT-decomposition
Artikel in diesem Heft
- Frontmatter
- Preface
- Methods of variational data assimilation with application to problems of hydrothermodynamics of marine water areas
- Mathematical immunology: from phenomenological to multiphysics modelling
- Iterative solution methods for elliptic boundary value problems
- Multi-physics flux coupling for hydraulic fracturing modelling within INMOST platform
- Tensor decompositions and rank increment conjecture
- Global optimization based on TT-decomposition