Abstract
Hemostasis is one of the most important protective mechanisms that functions to maintain vascular integrity and prevent bleeding. In arterial and microvascular circulation, where the near-wall shear stress is relatively high, the hemostatic response begins with aggregation of platelets on the injured endothelium or collagen. Regulation of hemostasis and thrombosis is immensely complex, as it depends on the blood cell adhesion and fluid dynamics. A possible regulatory mechanism relies on the coil-stretch transitions in a plasma protein — von Willebrand factor — that serves as a ligand to platelet adhesive membrane receptors. In this work, the initial stages of thrombus growth are studied using a 3D computer model that explicitly accounts for the shear-dependent vWf conformation.
Funding: This research was supported by the Russian Science Foundation (Project No. 17-71-10150).
Acknowledgement
The author acknowledges the grant from the Russian Science Foundation (Project No. 17-71-10150). The computational resources were provided by the Supercomputing Center of Moscow State University (supercomputers Lomonosov and Lomonosov-2).
References
[1] P. Ahlrichs and B. Dunweg, Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics. J. Chem. Physics111 (1999), No. 17, 8225–8239.10.1063/1.480156Search in Google Scholar
[2] C. Aponte-Santamaria, V. Huck, S. Posch, A. K. Bronowska, S. Grässle, M. A. Brehm, T. Obser, R. Schneppenheim, P. Hinterdorfer, S. W. Schneider, C. Baldauf, and F. Gräter, Force-sensitive autoinhibition of the von Willebrand factor is mediated by interdomain interactions. Biophys. J. 108 (2015), 2312–2321.10.1016/j.bpj.2015.03.041Search in Google Scholar PubMed PubMed Central
[3] N. Begent and G. V. R. Born, Growth rate in vivo of platelet thrombi, produced by iontophoresis of ADP, as a function of mean blood flow velocity. Nature227 (1970), 926–930.10.1038/227926a0Search in Google Scholar PubMed
[4] A. V. Belyaev, Hydrodynamic repulsion of spheroidal microparticles from micro-rough surfaces. PLOS ONE12 (2017), No. 8, e0183093.10.1371/journal.pone.0183093Search in Google Scholar PubMed PubMed Central
[5] A. V. Belyaev, M. A. Panteleev, and F. I. Ataullakhanov, Threshold of microvascular occlusion: injury size defines the thrombosis scenario. Biophys. J. 109 (2015), 450–456.10.1016/j.bpj.2015.06.019Search in Google Scholar PubMed PubMed Central
[6] A. V. Belyaev, Catching platelets from the bloodflow: the role of the conformation of von Willebrand factor. Mat. Mod. Nat. Phenom. 13 (2018), 44.10.1051/mmnp/2018043Search in Google Scholar
[7] A. V. Belyaev, Long ligands reinforce biological adhesion under shear flow. Phys. Rev. E97 (2018), 042407.10.1103/PhysRevE.97.042407Search in Google Scholar PubMed
[8] A. V. Belyaev, J. L. Dunster, J. M. Gibbins, M. A. Panteleev, and V. Volpert, Modelling thrombosis in silico: frontiers, challenges, unresolved problems and milestones. Physics of Life Reviews26–27 (2018), 57–95.10.1016/j.plrev.2018.02.005Search in Google Scholar PubMed
[9] N. Bessonov, E. Babushkina, S. Golovashchenko, A. Tosenberger, F. Ataullakhanov, M. Panteleev, A. Tokarev, and V. Volpert, Numerical simulation of blood flows with non-uniform distribution of erythrocytes and platelets. Russian J. Numer. Anal. Math. Modelling28 (2013), 443–458.10.1515/rnam-2013-0024Search in Google Scholar
[10] M. Bušík and I. Cimrák, The calibration of fluid-object interaction in immersed boundary method. EPJ Web of Conferences143 (2017), 02013.10.1051/epjconf/201714302013Search in Google Scholar
[11] J. R. Byrnes and A. S. Wolberg, Red blood cells in thrombosis. Blood130 (2017), No. 16, 1795–1799.10.1182/blood-2017-03-745349Search in Google Scholar PubMed PubMed Central
[12] A. Celi, G. Merrill-Skoloff, P. Gross, S. Falati, D. S. Sim, R. Flaumenhaft, B. C. Furie, and B. Furie, Thrombus formation: direct real-time observation and digital analysis of thrombus assembly in a living mouse by confocal and widefield intravital microscope. J. Thrombosis Haemostasis1 (2002), 60–68.10.1046/j.1538-7836.2003.t01-1-00033.xSearch in Google Scholar PubMed
[13] H. Chen and A. Alexander-Katz, Structure and dynamics of blood-clotting-inspired polymer–colloid composites. Soft Matter9 (2013), 10381.10.1039/c3sm52264dSearch in Google Scholar
[14] S. Chen and C. D. Doolen, Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics30 (1998), 329–364.10.1146/annurev.fluid.30.1.329Search in Google Scholar
[15] I. Cimrák, M. Gusenbauer, and I. Jančigová, An ESPResSo implementation of elastic objects immersed in a fluid. Computer Physics Commun. 185 (2014), No. 3, 900–907.10.1016/j.cpc.2013.12.013Search in Google Scholar
[16] I. Cimrák and M. Gusenbauer and T. Schrefl, Modelling and simulation of processes in microfluidic devices for biomedical applications. Computers Math. Appl. 64 (2012), No. 3, 278–288.10.1016/j.camwa.2012.01.062Search in Google Scholar
[17] C. Denis, N. Methia, P. S. Frenette, H. Rayburn, M. Ullman-Culleré, R. O. Hynes, and D. D. Wagner, A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc. Nat. Acad. Sci. USA95 (1998), 9524–9529.10.1073/pnas.95.16.9524Search in Google Scholar PubMed PubMed Central
[18] B. Dunweg and A. J. C. Ladd, Lattice Boltzmann Simulations of Soft Matter Systems. In: Adv. in Polymer Sci., Springer, Berlin–Heidelberg, 2008. %, 1–78.Search in Google Scholar
[19] T. L. Fabry, Mechanism of erythrocyte aggregation and sedimentation. Blood70 (1987), No. 5, 1572–1576.10.1182/blood.V70.5.1572.1572Search in Google Scholar
[20] D. A. Fedosov, W. Pan, B. Caswell, G. Gompper, and G. E. Karniadakis. Predicting human blood viscosity in silico. Proc. Nat. Acad. Sci. USA108 (2011), No. 29, 11772–11777.10.1073/pnas.1101210108Search in Google Scholar PubMed PubMed Central
[21] D. A. Fedosov, M. Dao, G. E. Karniadakis, and S. Suresh, Computational bio-rheology of human blood flow in health and disease. Ann. Biomed. Eng. 42 (2014), 368–387.10.1007/s10439-013-0922-3Search in Google Scholar PubMed PubMed Central
[22] M. H. Flamm, T. V. Colace, M. S. Chatterjee, H. Jing, S. Zhou, D. Jaeger, L. F. Brass, T. Sinno, and S. L. Diamond, Multiscale prediction of patient-specific platelet function under flow. Blood120 (2012), 190–198.10.1182/blood-2011-10-388140Search in Google Scholar PubMed PubMed Central
[23] A. L. Fogelson, Y. H. Hussain, and K. Leiderman, Blood clot formation under flow: the importance of factor XI depends strongly on platelet count. Biophys. J. 102 (2012), 10–18.10.1016/j.bpj.2011.10.048Search in Google Scholar PubMed PubMed Central
[24] H. Fu, Y. Jiang, D. Yang, F. Scheiflinger, W. P. Wong, and T. A. Springer, Flow-induced elongation of von Willebrand factor precedes tension-dependent activation. Nature Communications8 (2017), 324.10.1038/s41467-017-00230-2Search in Google Scholar PubMed PubMed Central
[25] Y. C. Fung, Biomechanics: Circulation. Second edition. Springer-Verlag, New York, 1997.10.1007/978-1-4757-2696-1Search in Google Scholar
[26] B. Furie and B. C. Furie, Thrombus formation in vivo. J. Clin. Invest. 115 (2005), 3355–3362.10.1172/JCI26987Search in Google Scholar PubMed PubMed Central
[27] T. M. Geislinger and T. Franke, Hydrodynamic lift of vesicles and red blood cells in flow–from Fahraeus & Lindqvist to microfluidic cell sorting. Advances in Colloid and Interface Science208 (2014), 161–176.10.1016/j.cis.2014.03.002Search in Google Scholar PubMed
[28] G. Giupponi, G. De Fabritiis, and Peter V. Coveney, Hybrid method coupling fluctuating hydrodynamics and molecular dynamics for the simulation of macromolecules. J. Chemical Physics126 (2007), No. 15, 154903.10.1063/1.2720385Search in Google Scholar PubMed
[29] S. P. Jackson, W. S. Nesbitt, and E. Westein, Dynamics of platelet thrombus formation, J. Thrombosis and Haemostasis7 (2009), No. 1, 17–20.10.1111/j.1538-7836.2009.03401.xSearch in Google Scholar PubMed
[30] J. Kim, C.-Zh. Zhang, X. Zhang, and T. A. Springer, A mechanically stabilized receptor-ligand flex-bond important in the vasculature. Nature466 (2010), 992–995.10.1038/nature09295Search in Google Scholar PubMed PubMed Central
[31] M. J. Maxwell, E. Westein, W. S. Nesbitt, S. Giuliano, S. M. Dopheide, and S. P. Jackson, Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood109 (2007), 566–576.10.1182/blood-2006-07-028282Search in Google Scholar PubMed
[32] N. A. Mody and M. R. King, Platelet adhesive dynamics. Part I: characterization of platelet hydrodynamic collisions and wall effects, Biophys. J. 95 (2008), 2539–2555.10.1529/biophysj.107.127670Search in Google Scholar PubMed PubMed Central
[33] N. A. Mody and M. R. King, Platelet adhesive dynamics. Part II: high shear-induced transient aggregation via GPIba-vWF-GPIba bridging. Biophys. J. 95 (2008), 2556–2574.10.1529/biophysj.107.128520Search in Google Scholar PubMed PubMed Central
[34] D. Mori, K. Yano, K. Tsubota, T. Ishikawa, S. Wada, and T. Yamaguchi, Simulation of platelet adhesion and aggregation regulated by fibrinogen and von Willebrand factor. Thromb. Haemost. 99 (2008), 108–115.10.1160/TH07-08-0490Search in Google Scholar PubMed
[35] L. Mountrakis, E. Lorenz, O. Malaspinas, S. Alowayyed, B. Chopard, and A. G. Hoekstra, Parallel performance of an IB-LBM suspension simulation framework. J. Comput. Sci. 9 (2015), 45–50.10.1016/j.jocs.2015.04.006Search in Google Scholar
[36] J. P. Müller, S. Mielke, A. Löf, T. Obser, C. Beer, L. K. Bruetzel, D. A. Pippig, W. Vanderlinden, J. Lipfert, R. Schneppenheim, and M. Benoit, Force sensing by the vascular protein von Willebrand factor is tuned by a strong intermonomer interaction. Proc. Nat. Acad. Sci. 113 (2016), No. 5, 1208–1213.10.1073/pnas.1516214113Search in Google Scholar PubMed PubMed Central
[37] L. Novák, Ha. Deckmyn, S. Damjanovich, and J. Hársfalvi, Shear-dependent morphology of von Willebrand factor bound to immobilized collagen. Blood99 (2002), No. 6, 2070–2076.10.1182/blood.V99.6.2070Search in Google Scholar
[38] I. V. Pivkin, P. D. Richardson, and G. Karniadakis, Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. Proc. Nat. Acad. Sci. 103 (2006), No. 46, 17164–17169.10.1073/pnas.0608546103Search in Google Scholar PubMed PubMed Central
[39] C. Pozrikidis, Orbiting motion of a freely suspended spheroid near a plane wall. J. Fluid Mech. 541 (2005), 105–114.10.1017/S0022112005006117Search in Google Scholar
[40] C. Pozrikidis, Flipping of an adherent blood platelet over a substrate. J. Fluid Mech. 568 (2005), 161–172.10.1017/S002211200600156XSearch in Google Scholar
[41] K. Rack, V. Huck, M. Hoore, D. Fedosov, S. Schneider, and G. Gompper, Margination and stretching of von Willebrand factor in the blood stream enable adhesion. Sci. Reports7 (2017), 14278.10.1038/s41598-017-14346-4Search in Google Scholar PubMed PubMed Central
[42] D. A. Reasor, J. R. Clausen, and C. K. Aidun, Coupling the lattice-Boltzmann and spectrin-link methods for the direct numerical simulation of cellular blood flow. Int. J. Numer. Methods Fluids68 (2012), No. 6, 767–781.10.1002/fld.2534Search in Google Scholar
[43] S. W. Schneider, S. Nuschele, A. Wixforth, C. Gorzelanny, A. Alexander-Katz, R. R. Netz, and M. F. Schneider, Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc. Nat. Acad. Sci. 104 (2007), 7899–7903.10.1073/pnas.0608422104Search in Google Scholar
[44] R. Skalak, S. R. Keller, and T. W. Secomb, Mechanics of blood flow. J. Biomech. Eng. 103 (1981), 102–115.10.1115/1.3138253Search in Google Scholar
[45] H. Slayter, J. Loscalzo, P. Bockenstedt, and R. I. Handin, Native conformation of human von Willebrand protein. Analysis by electron microscopy and quasi-elastic light scattering. J. Biological Chemistry260 (1985), No. 14, 8559–8563.10.1016/S0021-9258(17)39509-1Search in Google Scholar
[46] A. P. Spann, J. E. Campbell, S. R. Fitzgibbon, A. Rodriguez, A. P. Cap, L. H. Blackbourne, and E. S. G. Shaqfeh, The effect of hematocrit on platelet adhesion: experiments and simulations. Biophys. J. 111 (2016), 577–588.10.1016/j.bpj.2016.06.024Search in Google Scholar PubMed PubMed Central
[47] T. A. Springer, Von Willebrand factor, Jedi knight of the bloodstream. Blood124 (2014), No. 9, 1412–1425.10.1182/blood-2014-05-378638Search in Google Scholar PubMed PubMed Central
[48] T. J. Stalker, E. A. Traxler, J. Wu, K. M. Wannemacher, S. L. Cermignano, R. Voronov, S. L. Diamond, and L. F. Brass, Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood121 (2013), 1875–1885.10.1182/blood-2012-09-457739Search in Google Scholar PubMed PubMed Central
[49] F. Storti, T. H. S. van Kempen, and F. N. van de Vosse, A continuum model for platelet plug formation and growth. Int. J. Numer. Meth. Biomed. Eng. 30 (2014), 634–658.10.1002/cnm.2623Search in Google Scholar PubMed
[50] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Numerical Mathematics and Scientific Computation). Oxford University Press, USA, 2001.Search in Google Scholar
[51] A. A. Tokarev, A. A. Butylin, and F. I. Ataullakhanov, Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophys. J. 100 (2011), 799–808.10.1016/j.bpj.2010.12.3740Search in Google Scholar PubMed PubMed Central
[52] A. A. Tokarev, A. A. Butylin, E. A. Ermakova, E. E. Shnol, G. P. Panasenko, and F. I. Ataullakhanov, Finite platelet size could be responsible for platelet margination effect. Biophys. J. 101 (2011), 1835–1843.10.1016/j.bpj.2011.08.031Search in Google Scholar PubMed PubMed Central
[53] A. Tosenberger, F. Ataullakhanov, N. Bessonov, M. Panteleev, A. Tokarev, and V. Volpert. Modelling of thrombus growth in flow with a DPD-PDE method. J. Theor. Biology337 (2013), 30–41.10.1016/j.jtbi.2013.07.023Search in Google Scholar
[54] R. Tran-Son-Tay, S. P. Sutera, and P. R. Rao, Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion. Biophys. J. 46 (1984), No. 1, 65–72.10.1016/S0006-3495(84)83999-5Search in Google Scholar
[55] W. Wang, N. A. Mody, and M. R. King, Multiscale model of platelet translocation and collision. J. Comput Phys. 244 (2013), 223–235.10.1016/j.jcp.2012.08.014Search in Google Scholar PubMed PubMed Central
[56] W.-T. Wu, M. A. Jamiolkowski, W. R. Wagner, N. Aubry, M. Massoudi, and J. F. Antak, Multi-constituent simulation of thrombus deposition. Sci. Reports7 (2017), 42720.10.1038/srep42720Search in Google Scholar PubMed PubMed Central
[57] Z. Xu, N. Chen, S. C. Shadden, J. E. Marsden, M. M. Kamocka, E. D. Rosen, and M. Alber, Study of blood flow impact on growth of thrombi using a multiscale model. Soft Matter5 (2009), 769–779.10.1039/B812429ASearch in Google Scholar
[58] A. Yazdani, H. Li, J. D. Humphrey, and G. E. Karniadakis, A general shear-dependent model for thrombus formation. PLOS Computational Biology13 (2017), No. 1, e1005291.10.1371/journal.pcbi.1005291Search in Google Scholar PubMed PubMed Central
[59] H. Zhao and E. S. G. Shaqfeh, Shear-induced platelet margination in a microchannel. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83 (2011), 061924.10.1103/PhysRevE.83.061924Search in Google Scholar PubMed
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Computer modelling of initial platelet adhesion during microvascular thrombosis
- Spatially resolved modelling of immune responses following a multiscale approach: from computational implementation to quantitative predictions
- Pump eflciency of lymphatic vessels: numeric estimation
- Stability indicatrices of nonnegative matrices and some of their applications in problems of biology and epidemiology
- Numerical assessment of coaptation for auto-pericardium based aortic valve cusps
- Lumped parameter heart model with valve dynamics
Articles in the same Issue
- Frontmatter
- Computer modelling of initial platelet adhesion during microvascular thrombosis
- Spatially resolved modelling of immune responses following a multiscale approach: from computational implementation to quantitative predictions
- Pump eflciency of lymphatic vessels: numeric estimation
- Stability indicatrices of nonnegative matrices and some of their applications in problems of biology and epidemiology
- Numerical assessment of coaptation for auto-pericardium based aortic valve cusps
- Lumped parameter heart model with valve dynamics