Abstract
In the present paper we propose a mathematical model and study numerically the functioning of the p53 tumors suppressor protein and the direct positive connection of microRNA molecules related to it. The adequacy of the model is confirmed by qualitative concordance of calculation results with the experimental data concerning transactivation of specific p53-dependent microRNAs. Estimates of stability of individual and p53-mediated properties of microRNA as factors in diagnosing cancer and neurodegenerative diseases are given within the framework of the accepted model.
Funding
The work was supported by the program ‘Leading scientific schools of the Russian Federation’ (NSh-7214.2016.9).
References
[1] E. Batchelor, C. S. Mock, I. Bhan, A. Loewer, and G. Lahav, Recurrent initiation: A mechanism for triggering p53 pulses in response to DNA damage. Molecular Cell30 (2008), No. 3, 277-289.10.1016/j.molcel.2008.03.016Suche in Google Scholar PubMed PubMed Central
[2] A. Bisio, V. Sanctis, V. Vescovo, M. Denti, A. Jegga, A. Inga, and Ya. Ciribilli, Identification of new p53 target microRNAs by bioinformatics and functional analysis. BMC Cancer13 (2013), 552,13p10.1186/1471-2407-13-552Suche in Google Scholar PubMed PubMed Central
[3] T.-C. Chang, E. A. Wentzel, O. A. Kent, K. Ramachandran, M. Mullendore, K. H. Lee, G. Feldmann, M. Yamakuchi, M. Ferlito, C. J. Lowenstein, D. E. Arking, M. A. Beer, A. Maitra, and J. T. Mendell, Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell26 (2007), 745-75210.1016/j.molcel.2007.05.010Suche in Google Scholar PubMed PubMed Central
[4] C.-Y. Cheng, C.-I. Hwang, D. C. Corney, A. Flesken-Nikitin, J. Long-Chang, G. M. Oner, R. J. Munroe, J. C. Schimenti, H. Hermeking, and A. Yu. Nikitin, MiR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment. Cell Reports6 (2014), No. 6,1000-100710.1016/j.celrep.2014.02.023Suche in Google Scholar PubMed PubMed Central
[5] E. Goodall, P. R. Heath, O. Bandmann, Ja. Kirby, and P. J. Shaw, Neuronal dark matter: the emerging role of microRNAs in neurodegeneration. Frontiers in Cellular Neuroscience7 (2013), Article 178,16p10.3389/fncel.2013.00178Suche in Google Scholar PubMed PubMed Central
[6] H. Hermeking, MicroRNAs in the p53 network: micromanagement of tumor suppression. Nature Reviews Cancer12 (2012), No. 9, 613-62610.1038/nrc3318Suche in Google Scholar PubMed
[7] M. V. Iorio, R. Visone, G. Leva, V. Donati, F. Petrocca, P. Casalini, C. Taccioli, S. Volinia, C. G. Liu, H. Alder, G. A. Calin, S. Menard, and C. M. Croce, MicroRNA signatures in human ovarian cancer. Cancer Res. 67 (2007), No. 18, 8699-870710.1158/0008-5472.CAN-07-1936Suche in Google Scholar PubMed
[8] M. D. Jansson and A. H. Lund, MicroRNA and cancer. Molecular Oncology6 (2012), No. 6, 590-61010.1016/j.molonc.2012.09.006Suche in Google Scholar PubMed PubMed Central
[9] Q. Ji, X. Hao, M. Zhang, W. Tang, Ya. Meng, L. Li, D. Xiang, J. T. DeSano, G. T. Bommer, D. Fan, E. R. Fearon, T. S. Lawrence, and L. Xu, MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE4 (2009), No. 8, e6816,13p10.1371/journal.pone.0006816Suche in Google Scholar PubMed PubMed Central
[10] S. Kabaria, D. C. Choi, A. D. Chaudhuri, M. M. Mouradian, and E. Junn, Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinson’s disease. FEBS Lett. 589 (2015), No. 3, 319-32510.1016/j.febslet.2014.12.014Suche in Google Scholar PubMed PubMed Central
[11] N. N. Kolesnikov, S. E. Titov, Yu. A. Veryaskina, E. V. Karpinskaya, S. P. Schevschenko, L. G. Akhmerova, M. K. Ivanov, V. V. Kozlov, E. A. Elisaphenko, L. F. Gulyaeva, and I. F. Zhimulev, MicroRNA, evolution and cancer. Tsitologiya55 (2013), No. 3, 159-164Suche in Google Scholar
[12] F. A. Koshkin, D. A. Chistyakov, A. G. Nikitin, A. N. Konovalov, A. A. Potapov, D. Yu. Usachyov, D. I. Pitskhelauri, G. L. Kobyakov, L. V. Shishkina, and V. P. Chekhonin, Profile of MicroRNA expression in brain tumors of different malignancy. Bull. Exper. Biol. Med. 157 (2014), No. 6, 794-79710.1007/s10517-014-2669-8Suche in Google Scholar PubMed
[13] D. Lane and A. Levine, p53 research: The past thirty years and the next thirty years. Cold Spring Harb. Perspect. Biol. 2 (2010), No. 12, a000893, 10p10.1101/cshperspect.a000893Suche in Google Scholar PubMed PubMed Central
[14] E. Minones-Moyano, S. Porta, G. Escaram’s, R. Rabionet, S. Iraola, B. Kagerbauer, Yo. Espinosa-Parrilla, I. Ferrer, X. Estivill, and E. Marti, MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Human Molecular Genetics20 (2011), No. 15, 3067-307810.1093/hmg/ddr210Suche in Google Scholar PubMed
[15] E. G. Nikitina, L. N. Urazova, and V. N. Stegny, MicroRNAs and human cancer. Experimental Oncology34 (2012), No. 1, 2-8Suche in Google Scholar
[16] K. Otsuka and T. Ochiya, Genetic networks lead and follow tumor development: MicroRNA regulation of cell cycle and apoptosis in the p53 pathways. BioMed Research Int. 2014 (2014), Article ID 749724.10p10.1155/2014/749724Suche in Google Scholar PubMed PubMed Central
[17] N. Raver-Shapira, E. Marciano, E. Meiri, Ya. Spector, N. Rosenfeld, N. Moskovits, Z. Bentwich, and M. Oren, Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Molecular Cell26 (2007), 731-74310.1016/j.molcel.2007.05.017Suche in Google Scholar PubMed
[18] M. Sachdeva, S. Zhu, F. Wu, H. Wu, V. Walia, S. Kumar, R. Elble, K. Watabe, and Y.-Y. Mo, P53 represses c-Myc through induction of the tumor suppressor miR-145. PNAS106 (2009), No. 9, 3207-321210.1073/pnas.0808042106Suche in Google Scholar PubMed PubMed Central
[19] L. V. Shulenina, V. F. Mikhailov, E. V. Ledin, N. F. Raeva, and G. D. Zasukhina, Evaluation of P53-dependent system of maintaining the genome stability by content of microRNA and mRNA in blood of cancer patients. Medical Radiology and Radiation Safety60 (2015), No. 1, 5-14Suche in Google Scholar
[20] V. Tarasov, P. Jung, B. Verdoodt, D. Lodygin, A. Epanchintsev, A. Menssen, G. Maister, and H. Hermeking, Differential regulation of microRNAs by p53 revealed by massively parallel sequencing. Cell Cycle6 (2007), No. 13,1586-159310.4161/cc.6.13.4436Suche in Google Scholar PubMed
[21] G. Tiana, M. H. Jensen, and K. Sneppen, Time delay as a key to apoptosis induction in the p53 network. Eur. Phys.J. B. 29 (2002), 135-14010.1140/epjb/e2002-00271-1Suche in Google Scholar
[22] S. E. Titov, P. S. Demenkov, M. K. Ivanov, E. S. Malakhina, T. L. Poloz, E. V. Tsivlikova, M. S. Ganzha, S. P. Shevchenko, L. F. Gulyaeva, and N. N. Kolesnikov, Selection and validation of miRNAs as normalizers for profiling expression of microRNAs isolated from thyroid fine needle aspiration smears. Oncology Rep. 36 (2016), No. 5, 2501-251010.3892/or.2016.5113Suche in Google Scholar PubMed PubMed Central
[23] O. F. Voropaeva, Yu. I. Shokin, L. M. Nepomnyashchikh, and S. R. Senchukova, Mathematical modelling of functioning of the p53-Mdm2 protein system. Bull. Exper. Biol. Med. 157 (2014), No. 2, 291-29410.1007/s10517-014-2548-3Suche in Google Scholar PubMed
[24] O. F. Voropaeva, Yu. I. Shokin, L. M. Nepomnyashchikh, and S. R. Senchukova, Mathematical modelling of p53-Mdm2 protein biological system regulation. Bull. Exper. Biol. Med. 157 (2014), No. 4, 535-53810.1007/s10517-014-2608-8Suche in Google Scholar PubMed
[25] O. F. Voropaeva, S. R. Senchukova, K. V. Brodt, K. E. Garbuzov, A. V. Melnitchenko, and A. A. Starikova, Numerical simulation of ultradian oscillations in p53-Mdm2 network under stress conditions. Math. Models and Computer Simulations7 (2015), No. 3, 281-29310.1134/S2070048215030102Suche in Google Scholar
[26] A. O. Zheltukhin and P. M. Chumakov, Constitutive and induced functions of the p53 gene. Biochemistry75 (2010), No. 13, 1692-1721.10.1134/S0006297910130110Suche in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- The study and numerical solution of some inverse problems in simulation of hydrophysical fields in water areas with ‘liquid’ boundaries
- New Monte Carlo algorithms for investigation of criticality fluctuations in the particle scattering process with multiplication in stochastic media
- Asymptotic approximations for the stationary radiative-conductive heat transfer problem in the two-dimensional system of plates
- Variational assimilation of mean daily observation data for the problem of sea hydrothermodynamics
- Statistical modelling algorithm for solving the nonlinear Boltzmann equation based on the projection method
- Numerical investigation of diagnostic properties of p53-dependent microRNAs
Artikel in diesem Heft
- Frontmatter
- The study and numerical solution of some inverse problems in simulation of hydrophysical fields in water areas with ‘liquid’ boundaries
- New Monte Carlo algorithms for investigation of criticality fluctuations in the particle scattering process with multiplication in stochastic media
- Asymptotic approximations for the stationary radiative-conductive heat transfer problem in the two-dimensional system of plates
- Variational assimilation of mean daily observation data for the problem of sea hydrothermodynamics
- Statistical modelling algorithm for solving the nonlinear Boltzmann equation based on the projection method
- Numerical investigation of diagnostic properties of p53-dependent microRNAs