Startseite A semi-Lagrangian method on dynamically adapted octree meshes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A semi-Lagrangian method on dynamically adapted octree meshes

Ein Erratum zu diesem Artikel finden Sie hier: https://doi.org/10.1515/rnam-2016-0006
  • Kirill M. Terekhov , Kirill D. Nikitin EMAIL logo , Maxim A. Olshanskii und Yuri V. Vassilevski
Veröffentlicht/Copyright: 8. Dezember 2015

Abstract

The paper develops a semi-Lagrangian method for the numerical integration of the transport equation discretized on adaptive Cartesian cubic meshes. We use dynamically adaptive graded Cartesian grids. They allow for a fast grid reconstruction in the course of numerical integration. The suggested semi- Lagrangian method uses a higher order interpolation with a limiting strategy and a back-and-forth correction of the numerical solution. The interpolation operators have compact nodal stencils. In a series of experiments with dynamically adapted meshes, we demonstrate that the method has at least the second-order convergence and acceptable conservation and monotonicity properties.

Received: 2015-9-28
Accepted: 2015-10-15
Published Online: 2015-12-8
Published in Print: 2015-12-1

© 2015 by Walter de Gruyter Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rnam-2015-0033/html
Button zum nach oben scrollen