Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
On measures of errors for nonlinear variational problems
-
S. I. Repin
Veröffentlicht/Copyright:
26. Februar 2013
Abstract
We consider a class of convex variational problems and deduce computable and unconditional upper bounds of quantities, which are certain measures of errors associated with an approximation. Also, we discuss closely related mathematical questions, which are important for the a posteriori error estimation theory of nonlinear problems. Namely, we present generalized forms of the Prager- Synge estimate and of the Mikhlin’s variational identity, a generalized form of the Helmholtz decomposition theorem, and derive a general estimate of the distance to the set equilibrated fields.
Published Online: 2013-02-26
Published in Print: 2012-12
© 2013 by Walter de Gruyter GmbH & Co.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Masthead
- Construction of piecewise-harmonic interpolations on spherical surfaces
- Simulation of surface waves generated by an underwater landslide in a bounded reservoir
- Multilevel substructuring preconditioners for anisotropic diffusion problems on rectangular meshes
- On measures of errors for nonlinear variational problems
- Numerical simulation of supersonic flows in a channel
- To the problem of construction of difference schemes on movable grids
Artikel in diesem Heft
- Masthead
- Construction of piecewise-harmonic interpolations on spherical surfaces
- Simulation of surface waves generated by an underwater landslide in a bounded reservoir
- Multilevel substructuring preconditioners for anisotropic diffusion problems on rectangular meshes
- On measures of errors for nonlinear variational problems
- Numerical simulation of supersonic flows in a channel
- To the problem of construction of difference schemes on movable grids