Startseite Wirtschaftswissenschaften Evaluating the Efficiency and Productivity of Colombian Criminal Justice
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Evaluating the Efficiency and Productivity of Colombian Criminal Justice

  • Nicolás Enrique Valencia Santiago ORCID logo und Camilo Almanza Ramírez EMAIL logo
Veröffentlicht/Copyright: 7. November 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, Data Envelopment Analysis (DEA) is used to calculate the technical efficiency and the Malmquist Total Factor Productivity Index (MPI) of the municipal (JM) and circuit courts (JC) of the ordinary jurisdiction of the Colombian criminal justice system, from 2012 to 2016. The results show an average technical inefficiency of 16, 9% for de JCs, and 17.3% for JMs. Additionally, we find a total factor productivity (TFP) decline for these courts of 24 and 44%, respectively. Although both components of the MPI registered average values lower than one, the decrease in TFP is mainly driven by the decline in the technical change component.

JEL Classification: C67; D2; H11; K4; K14

Corresponding authors: Camilo Almanza Ramírez, PhD, Fundación Universidad del Norte, Barranquilla, Colombia, E-mail: ; and Nicolás Enrique Valencia Santiago, MSc, Barranquilla, Colombia, E-mail:

Acknowledgments

Acknowledgements to certified translator Iván Yunis for the English translatiom. Acknowledgements to Luis Abdenago Chaparro Galan, Administrative Director of the Labor Division of the Judiciary and Nina Puentes Mora, of the Registry, Labor History Control, and Correspondence Group of the Labor Division of the Judiciaty for her comments on the implications of this kind of analysis on the Colombian judicial system.

Appendix

Formally, consider a productive process where each jJ agent uses x R + N inputs to produce y R + M outputs. The technology of production can be represented by the following set:

(1) P x = y : x c a n p r o d u c e y

Set P x maintains every vector of output y that can be produced with the vector of inputs x. It is assumed that P x is non-empty, convex, and compact, and satisfies the assumption of free disposability of outputs,[14] which is, for every y′ ≤ y, both y′ and y belong to P x .

For each x R + N , the frontier (isoquant) of set P x , i.e., the subset of all combination of outputs that can be produced using exactly the vector of inputs x, is defined by the following:

(2) δ P x = y R + M : y P ( x ) , θ y P ( x ) i f θ > 1

Following (Fare et al. (1994)), a technology of reference was constructed for each period with x R + N inputs used by j DMUs (Courts) for producing y R + M outputs, under Constant Returns to Scale (CRS), and Free Disposability of Outputs (FDO), by the following:

(3) P x | C R S , F D O = y : y m j = 1 J z j y j m , m = 1,2 , , M ; j = 1 J z j x j n x n n = 1,2 , N z R + j ,

where z j are intensity variables that allow the model to generate the linear combinations of input and output set for every DMU, while inequalities y m j = 1 J z j y j m , and x n j = 1 J z j model free disposability of inputs and outputs, respectively.

The output-based technical efficiency, i.e. the ability of a DMU to produce the maximum output with a given set of inputs, is measured as the maximum possible expansion of the vector of outputs y R + M , until the frontier of the output set, without changing the number of used inputs. That is:

(4) E F o t C R S , F D O = M a x θ { θ : θ y P ( x ) }
yP(x) if and only if the conditions established in (3) are satisfied, technical efficiency under the assumption of CRS, and FDO of Court j for year t can be calculated by solving the following linear problem:
(5) E F o t C R S , F D O = M a x z , θ θ s a θ y j m j = 1 J z j y j m , m = 1,2 , , M x n j = 1 J z j x j n n = 1,2 , N . z j R + J j = 1,2 , , J

A DMU might be technically efficient, but operate at a suboptimal size, that is, showing scale inefficiency. Scale Efficiency ( E F o E ) is measured as the quotient between technical efficiency under Constant Returns to Scale and technical efficiency under Variable Returns to Scale (VRS).[15] To obtain the measure of technical efficiency under variable returns to scale, the restriction z j R + J in (3) and (5) is changed to j = 1 n z j = 1 .

To determine the source of inefficiency it is also required to measure technical efficiency under Non-increasing Returns to Scale (NIRS), which is achieved by replacing the restriction z j R + J in (3) and (5) with j = 1 n z j 1 . The DMU operate at an optimal scale if and only if E F o E = 1 . If E F o E < 1 , inefficiency of scale exists, and this result is due to:

  1. Increasing Returns to Scale (IRS) if the efficiency measure under non-increasing returns is different from the efficiency measure under variable returns. This is:

    E F o t N I R S , F D O E F o t V R S , F D O
  2. Decreasing Returns to Scale (DRS) if the Efficiency measure under NISR is not different from the Efficiency measure under variable returns. This is:

    E F o t N I R S , F D O = E F o t V R S , F D O

    The Output-Based Malmquist Productivity Index is defined as the geometric average of the two indices based on period-t and period-t + 1 levels of technology, as follows:

    (6) I M o t + 1 x t + 1 , y t + 1 , x t , y t | C R S , F D O = C E F 0 t + 1 x C T 0 t + 1 1 / 2

    where Efficiency Change, C E F o T , is:

    (7) C E F o t + 1 = E F o t ( x t , y t | C , F ) E F o t + 1 ( x t + 1 , y t + 1 | C , F ) ,

And Technical Change, CT o , is:

(8) C T o t + 1 = E F o t + 1 ( x t + 1 , y t + 1 | C , F ) E F o t ( x t + 1 , y t + 1 | C , F ) x E F o t + 1 ( x t , y t | C , F ) E F o t ( x t , y t | C F ) 1 / 2

Following Fare et al. (1994), Technical Efficiency Change (7) is also decomposed into two elements:

(9) C E F o t + 1 = P E T t + 1 x E E S t + 1 ,

where Pure Technical Efficiency, PET, is:

(10) P E T t + 1 = E F o t ( x t , y t | V , F ) E F o t + 1 ( x t + 1 , y t + 1 | V , F )

and the Scale Efficiency Change, EES, is:

(11) E E S t + 1 = E F o t ( x t , y t | C , F ) E F o t + 1 ( x t , y t | V , F )

To calculate TFP, Equations (6)(11), the following linear problems must be solved:

(12) E F o t C R S , F D O = M a x z , θ θ s a θ y j m t + 1 j = 1 J z j y j m , m = 1,2 , , M x j n t + 1 j = 1 J z j x j n n = 1,2 , N . z j 0 j = 1,2 , , J

And:

(13) E F o t + 1 C R S , F D O = M a x z , θ θ s a θ y j m t j = 1 J z j y j m , m = 1,2 , , M x j n t j = 1 J z j x j n n = 1,2 , N . z j 0 j = 1,2 , , J

It can be stated that productivity increases or decreases if IM is greater or less than one. In the same direction, there are gains (loss) in technical efficiency and technical progress (Regress) if the corresponding components CET and CT are greater (less) than one.

Comparing the levels of the components CET and CT, it is possible to identify the main source of gain or loss of the observed productivity of a DMU. If CET > CT, for example, it is more likely that gains in productivity are due to improvements in Technical Efficiency. If the opposite occurs, the increase in productivity is conferred to Technical Progress.

Because the technical efficiency change is decomposed in PET and EES, if the first has a higher value than the second, then the DMU’s CET’s improvements are more likely due to what happened in that component. On the other hand, if the relation between PET and EES is the opposite, the reason of the increase in productivity changes in the same direction.

References

Antonuccia, L., Crocetta, C., and D’Ovidio, F.D. (2014). Evaluation of Italian judicial system. Procedia Econ. Finance 17: 121–130. https://doi.org/10.1016/s2212-5671(14)00886-7.Suche in Google Scholar

Berger, A.N. and Humphrey, D.B. (1997). Efficiency of financial institutions: international survey and directions for future research. Eur. J. Oper. Res. 98: 175–212, https://doi.org/10.1016/S0377-2217(96)00342-6.Suche in Google Scholar

Aubyn, M. (2009). Law and order efficiency measurement – a literature Review (July, 17 2008). ISEG-UTL Economics Working Paper No. 19/2008/DE/CISEP/UECE, Available at SSRN: https://ssrn.com/abstract=1162120 or http://dx.doi.org/10.2139/ssrn.1162120].10.2139/ssrn.1162120Suche in Google Scholar

Bełdowski, J., Dąbroś, Ł., and Wojciechowski, W. (2020). Judges and court performance: a case study of district commercial courts in Poland. Eur. J. Law Econ. 50: 171–201, https://doi.org/10.1007/s10657-020-09656-4.Suche in Google Scholar

Borisova, N. (2014). Judicial reform and its effect on the economy. The case of Bulgaria. In: Emle, Available at: http://emle.org/wp-content/uploads/2018/02/EMLE-thesis-Ivanova-Neli.pdf.Suche in Google Scholar

Burgos, J.G. (2013). La administración de justicia en la Constitución de 1991: elementos para un balance. Pensam. Juríd. 36: 15–34.Suche in Google Scholar

Camacho, S.J.D., Ramos, S.A.M., Rico, V.D., and Villamil, R.K.D. (2019). La eficiencia en el sector justicia colombiano, énfasis en la jurisdicción ordinaria, vol. 1. Fedesarrollo Publications, Available at: https://www.repository.fedesarrollo.org.co/handle/11445/3793.Suche in Google Scholar

Corporación Excelencia en la Justicia (2019). Inventario activo, ingreso y egreso de procesos del Sector Jurisdiccional en Colombia. Indicadores de Justicia, Available at: https://cej.org.co/indicadores-de-justicia/efectividad/inventario-activo-ingreso-y-egreso-de-procesos-del-sector-jurisdiccional-en-colombia/.Suche in Google Scholar

Charnes, A., Cooper, W.W., and Rhodes, E. (1978). Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2: 429–444. https://doi.org/10.1016/0377-2217(78)90138-8.Suche in Google Scholar

Cigalini, M. (2012). El Derecho Romano y El Derecho Anglosajon. Scribd, Available at: https://it.scribd.com/doc/106740681/El-Derecho-Romano-y-El-Derecho-Anglosajon-1.Suche in Google Scholar

Coelli, T.J., Rao, D.S.P., O’Donnell, C.J., and Battese, G.E. (2005). An Introduction to Efficiency and Productivity Analysis. Springer, New York, NY.Suche in Google Scholar

Fare, R., Grosskopf, S., Norris, M., Zhang, Z. (1994). Productivity growth, technical progress and efficiency change in Industrialized Countries. Am. Econ. Rev. 84: 66–83, https://doi.org/10.1111/j.1467-8268.2004.00089.x.Suche in Google Scholar

Fauvrelle, T.A. and Almeida, A.T.C. (2018). Determinants of judicial efficiency change: evidence from Brazil. Rev. Law Econ. 14: 1–20. https://doi.org/10.1515/rle-2017-0004.Suche in Google Scholar

Ferro, G., Romero, C.A., and Romero-Gómez, E. (2018). Efficient courts? A Frontier performance assessment. Benchmark Int. J. 25: 3443–3458. https://doi.org/10.1108/BIJ-09-2017-0244.Suche in Google Scholar

Finocchiaro, M. and Guccio, C. (2012). Searching for the source of technical inefficiency in Italian judicial districts: an empirical investigation. Eur. J. Law Econ. 38: 369–391, https://doi.org/10.1007/s10657-012-9329-0.Suche in Google Scholar

García-Rubio, M.A. and Rosales-López, V. (2010). Justicia y Economía: Evaluando la Eficiencia Judicial en Andalucía. InDret: Revista para el Análisis del Derecho, http://www.indret.com/pdf/773_es.pdf.Suche in Google Scholar

Gomes, A.G., Guimaraes, T.A., and Akutsu, L. (2017). Court caseload management: the role of judges and administrative assistants. Revista de Administração Contemporânea 21: 648–665. https://doi.org/10.1590/1982-7849rac2017160179.Suche in Google Scholar

Gonzáles, A.B. (1991). Ronald Coase y el Sistema Jurídico. Revista Apuntes 28: 104–113, https://doi.org/10.2307/j.ctv893jvw.6.Suche in Google Scholar

Gutiérrez, J.A. (2008). Análisis Económico del Derecho: Revisión al Caso Colombiano. Revista de Derecho y Economía 24: 11–28, https://doi.org/10.2307/j.ctv6gqx9r.Suche in Google Scholar

Guzowska, M. and Strak, T. (2010). An examination of the efficiency of Polish public sector entities based on public prosecutor offices. Oper. Res. Decis. 20: 41–57.Suche in Google Scholar

Gómez, C., Velásquez, H., Rendón, A.J., and Bohórquez, S. (2017). Crime in Colombia: more law enforcement or more justice? Crime Law Soc. Change 68: 1–24, https://doi.org/10.1007/s10611-017-9682-6.Suche in Google Scholar

Hagstedt, K. and Proos, J. (2008). Has the recent restructuring of the Swedish district courts improved efficiency? Vols. 1–19. Uppsala University, Examensarbete C, Available at: https://www.diva-portal.org/smash/get/diva2:132245/FULLTEXT01.pdf.Suche in Google Scholar

Ippoliti, R. and Tria, G. (2020). Efficiency of judicial systems: model definition and output estimation. J. Appl. Econ. 23: 385–408. https://doi.org/10.1080/15140326.2020.1776977.Suche in Google Scholar

JEP (2018). Jurisdicción Especial para la Paz. Jurisdicción Especial para la Paz Web Page, https://www.jep.gov.co/JEP/Paginas/Jurisdiccion-Especial-para-la-Paz.aspx (Accessed 24 October 2022).Suche in Google Scholar

Kittelsen, S.A.C. and Førsund, F.R. (1992). Efficiency analysis of Norwegian district courts. J. Prod. Anal. 3: 277–306. https://doi.org/10.1007/BF00158357.Suche in Google Scholar

Lewin, A.Y., Morey, R.C., and Cook, T.J. (1982). Evaluating the administrative efficiency of courts. Omega 10: 401–411. https://doi.org/10.1016/0305-0483(82)90019-6.Suche in Google Scholar

Ley 270 de 1996, 1 (2015).Suche in Google Scholar

Lorizio, M. and Gurrieri, A.R. (2015). The efficiency and demands of the Italian justice system. J. Stat. Sci. Appl. 3: 31–38. https://doi.org/10.17265/2328-224x/2015.34.001.Suche in Google Scholar

Mattsson, P., Månsson, J., Andersson, C., and Bonander, F. (2018). A bootstrapped Malmquist index applied to Swedish district courts. Eur. J. Law Econ. 46: 109–139. https://doi.org/10.1007/s10657-018-9582-y.Suche in Google Scholar

McCannon, B.C. and Detotto, C. (2016). Consolidation of prosecutor offices. SSRN Electron. J. 8: 1–29, https://doi.org/10.2139/ssrn.2735760.Suche in Google Scholar

Nissi, E. and Rapposelli, A. (2010). A data envelopment analysis of Italian courts efficiency. Statistica Applicata – Italian Journal of Applied Statistics 22: 199–210.Suche in Google Scholar

Ragipi, A. (2017). Technical Efficiency of Swedish District Courts – A Stochastic Distance Function Analysis. Linnaeus University, Available at: http://www.diva-portal.org/smash/get/diva2:1252616/FULLTEXT01.pdf.Suche in Google Scholar

Vázquez, M.J. and Gutiérrez, F. (2017). Está Justificada La Mala Imagen De La Administración De Justicia Española? ¿Es Un Problema De Inversión?: Una Comparativa Europea Mediante El Análisis Dea. Revista de Estudios Empresariales. Segunda Época 2: 28–47, https://doi.org/10.17561/ree.v0i1.3190.Suche in Google Scholar

Vega, L. (2012). ¿Por qué la justicia colombiana es la sexta más lenta del mundo? | Radio Nacional de Colombia. Radio Nacional Web Page, https://www.radionacional.co/documentales/por-qu-la-justicia-colombiana-es-la-sexta-m-s-lenta-del-mundo (Accessed 24 October 2022).Suche in Google Scholar

Voigt, S. (2016). Determinants of judicial efficiency: a survey. Eur. J. Law Econ. 42: 183–208, https://doi.org/10.1007/s10657-016-9531-6.Suche in Google Scholar

Yeung, L. (2018). Measuring efficiency of Brazilian courts: One decade later. SSRN Electron. J 279: 111–134, https://doi.org/10.2139/ssrn.3200588.Suche in Google Scholar

Yeung, L. and Azevedo, P.F.d. (2011). Measuring the efficiency of Brazilian courts from 2006 to 2008: what Do the numbers tell Us? vol. 251. Instituto de Ensino e Pesquisa Publications, Available at: https://www.researchgate.net/publication/237349191_Measuring_the_Efficiency_of_Brazilian_Courts_from_2006_to_2008_What_Do_the_Numbers_Tell_Us.1.Suche in Google Scholar

Published Online: 2022-11-07

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 31.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rle-2021-0082/html
Button zum nach oben scrollen