Startseite Exercise-induced modulation of miRNAs and gut microbiome: a holistic approach to neuroprotection in Alzheimer’s disease
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Exercise-induced modulation of miRNAs and gut microbiome: a holistic approach to neuroprotection in Alzheimer’s disease

  • Rui Wang , Juan Li , Xiaochen Li , Yan Guo , Pei Chen und Tian Peng ORCID logo EMAIL logo
Veröffentlicht/Copyright: 7. Mai 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is marked by cognitive decline, neuroinflammation, and neuronal loss. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression, influencing key pathways involved in neuroinflammation and neurodegeneration in AD. This review delves into the multifaceted role of exercise in modulating miRNA expression and its interplay with the gut microbiome, proposing a comprehensive framework for neuroprotection in AD. By synthesizing current research, we elucidate how exercise-induced changes in miRNA profiles can mitigate inflammatory responses, promote neurogenesis, and reduce amyloid-beta and tau pathologies. Additionally, we explore the gut–brain axis, highlighting how exercise-driven alterations in gut microbiota composition can further influence miRNA expression, thereby enhancing cognitive function and reducing neuroinflammatory markers. This holistic approach underscores the potential of targeting exercise-regulated miRNAs and gut microbiome interactions as a novel, noninvasive therapeutic strategy to decelerate AD progression and improve quality of life for patients. This approach aims to decelerate disease progression and improve patient outcomes, offering a promising avenue for enhancing the effectiveness of AD management.


Corresponding author: Tian Peng, Department of Physical Education, Zhejiang University of Science and Technology, HangZhou 310023, China, E-mail:

Acknowledgments

All figures were generated by Biorender and we achnowledged Biorender team.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Rui Wang, Juan Li, Xiaochen Li, Yan Guo, Pei Chen, Tian Peng: Conceptualization, Methodology, Writing – Original Draft.

  4. Use of Large Language Models, AI and Machine Learning Tools: None.

  5. Conflict of interest: The authors declare no conflicts of interest.

  6. Research funding: None funded.

  7. Data availability: Not applicable.

References

Abraham, D., Feher, J., Scuderi, G.L., Szabo, D., Dobolyi, A., Cservenak, M., Juhasz, J., Ligeti, B., Pongor, S., Gomez-Cabrera, M.C., et al.. (2019). Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: role of microbiome. Exp. Gerontol. 115: 122–131, https://doi.org/10.1016/j.exger.2018.12.005.Suche in Google Scholar

Absalon, S., Kochanek, D.M., Raghavan, V., and Krichevsky, A.M. (2013). MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J. Neurosci. Off. J. Soc. Neurosci. 33: 14645–14659, https://doi.org/10.1523/jneurosci.1327-13.2013.Suche in Google Scholar

Adlard, P.A., Perreau, V.M., Pop, V., and Cotman, C.W. (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J. Neurosci. Off. J. Soc. Neurosci. 25: 4217–4221, https://doi.org/10.1523/jneurosci.0496-05.2005.Suche in Google Scholar

Alagarsamy, J., Jaeschke, A., and Hui, D.Y. (2022). Apolipoprotein E in cardiometabolic and neurological health and diseases. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms23179892.Suche in Google Scholar

Alexandrov, P.N., Dua, P., and Lukiw and, W.J. (2014). Up-regulation of miRNA-146a in progressive, age-related inflammatory neurodegenerative disorders of the human CNS. Front. Neurol. 5: 181, https://doi.org/10.3389/fneur.2014.00181.Suche in Google Scholar

Alexandrov, P., Zhai, Y., Li, W., and Lukiw, W. (2019). Lipopolysaccharide-stimulated, NF-kB-miRNA-146a- and miRNA-155-mediated molecular-genetic communication between the human gastrointestinal tract microbiome and the brain. Folia Neuropathol. 57: 211–219, https://doi.org/10.5114/fn.2019.88449.Suche in Google Scholar

Alimoradi, Z., Taghian, F., and Jalali, Dehkordi K. (2024). Effect of linalool, cineole, and β-bourbonene coupled with aerobic training on the improvement of presenilin-1/amyloid protein precursor/interleukin-1 beta/CASPASE 1 network, oxidative capacity, and miRNA-210 in mice with Alzheimer’s disease. Arch. Razi. Inst. 79: 629–638, https://doi.org/10.32592/ARI.2024.79.3.629.Suche in Google Scholar

Aloi, M.S., Prater, K.E., Sopher, B., Davidson, S., Jaydev, S., and Garden, G.A. (2021). The pro-inflammatory microRNA miR-155 influences fibrillar β-Amyloid∼1-42∼ catabolism by microglia. Glia 69: 1736–1748, https://doi.org/10.1002/glia.23988.Suche in Google Scholar

Alves da Costa, C., Sunyach, C., Pardossi-Piquard, R., Sévalle, J., Vincent, B., Boyer, N., Kawarai, T., Girardot, N., George-Hyslop, P.S., and Checler, F. (2006). Presenilin-dependent gamma-secretase-mediated control of p53-associated cell death in Alzheimer’s disease. J. Neurosci. Off. J. Soc. Neurosci. 26: 6377–6385, https://doi.org/10.1523/jneurosci.0651-06.2006.Suche in Google Scholar

Amakiri, N., Kubosumi, A., Tran, J., and Reddy, P.H. (2019). Amyloid beta and MicroRNAs in Alzheimer’s disease. Front. Neurosci. 13: 430, https://doi.org/10.3389/fnins.2019.00430.Suche in Google Scholar

Ariafar, S., Makhdoomi, S., and Mohammadi, M. (2023). Arsenic and tau phosphorylation: a mechanistic review. Biol. Trace Elem. Res. 201: 5708–5720, https://doi.org/10.1007/s12011-023-03634-y.Suche in Google Scholar

Ashrafian, H., Zadeh, E.H., and Khan, R.H. (2021). Review on Alzheimer’s disease: inhibition of amyloid beta and tau tangle formation. Int. J. Biol. Macromol. 167: 382–394, https://doi.org/10.1016/j.ijbiomac.2020.11.192.Suche in Google Scholar

Askarova, S., Umbayev, B., Masoud, A.-R., Kaiyrlykyzy, A., Safarova, Y., Tsoy, A., Olzhayev, F., and Kushugulova, A. (2020). The links between the gut microbiome, aging, modern lifestyle and Alzheimer’s disease. Front. Cell. Infect. Microbiol. 10: 104, https://doi.org/10.3389/fcimb.2020.00104.Suche in Google Scholar

Banzhaf-Strathmann, J., Benito, E., May, S., Arzberger, T., Tahirovic, S., Kretzchmar, H., Fischer, A., and Edbauer, D. (2014). MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. EMBO J. 33: 1667–1680, https://doi.org/10.15252/embj.201387576.Suche in Google Scholar

Barancheshmeh, M., Najafzadehvarzi, H., Shokrzadeh, N., and Aram, C. (2025). Comparative analysis of fennel essential oil and manganese in PCOS rat model via modulating miR-145 expression and structure-based virtual screening of IGF2R protein to address insulin resistance and obesity. Obes. Med. 53: 100574, https://doi.org/10.1016/j.obmed.2024.100574.Suche in Google Scholar

Barry, A.E., Klyubin, I., Mc Donald, J.M., Donald, J.M.M., Mably, A.J., Farrell, M.A., Scott, M., Walsh, D.M., and Rowan, M.J. (2011). Alzheimer’s disease brain-derived amyloid-β-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J. Neurosci. Off. J. Soc. Neurosci. 31: 7259–7263, https://doi.org/10.1523/jneurosci.6500-10.2011.Suche in Google Scholar

Bäuerl, C., Collado, M.C., Diaz Cuevas, A., Viña, J., and Martínez, G.P. (2018). Shifts in gut microbiota composition in an APP/PSS1 transgenic mouse model of Alzheimer’s disease during lifespan. Lett. Appl. Microbiol. 66: 464–471.Suche in Google Scholar

Beecham, G.W., Hamilton, K., Naj, A.C., Martin, E.R., Huentelman, M., Myers, A.J., Corneveaux, J.J., Hardy, J., Vonsattel, J.-P., Younkin, S.G., et al.. (2014). Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet. 10: e1004606, https://doi.org/10.1371/journal.pgen.1004606.Suche in Google Scholar

Beylerli, O., Gareev, I., Sufianov, A., Ilyasova, T., and Zhang, F. (2022). The role of microRNA in the pathogenesis of glial brain tumors. Non-coding RNA Res 7: 71–76, https://doi.org/10.1016/j.ncrna.2022.02.005.Suche in Google Scholar

Bhatia, V. and Sharma, S. (2021). Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer’s disease. J. Neurol. Sci. 421: 117253, https://doi.org/10.1016/j.jns.2020.117253.Suche in Google Scholar

Bhatti, G.K., Reddy, A.P., Reddy, P.H., and Bhatti, J.S. (2019). Lifestyle modifications and nutritional interventions in aging-associated cognitive decline and Alzheimer’s disease. Front. Aging Neurosci. 11: 369, https://doi.org/10.3389/fnagi.2019.00369.Suche in Google Scholar

Bicker, F., Vasic, V., Horta, G., Ortega, F., Nolte, H., Kavyanifar, A., Keller, S., Dudvarski, S.N., Harter, P.N., Benedito, R., et al.. (2017). Neurovascular EGFL7 regulates adult neurogenesis in the subventricular zone and thereby affects olfactory perception. Nat. Commun. 8: 15922, https://doi.org/10.1038/ncomms15922.Suche in Google Scholar

Boissonneault, V., Plante, I., Rivest, S., and Provost, P. (2009). MicroRNA-298 and MicroRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1 *. J. Biol. Chem. 284: 1971-–1981, https://doi.org/10.1074/jbc.m807530200.Suche in Google Scholar

Bonaterra-Pastra, A., Benítez, S., Pancorbo, O., Rodríguez-Luna, D., Vert, C., Rovira, A., Freijo, M.M., Tur, S., Martínez-Zabaleta, M., Cardona Portela, P., et al.. (2023). Association of candidate genetic variants and circulating levels of ApoE/ApoJ with common neuroimaging features of cerebral amyloid angiopathy. Front. Aging Neurosci. 15: 1134399, https://doi.org/10.3389/fnagi.2023.1134399.Suche in Google Scholar

Borsom, E.M., Conn, K., Keefe, C.R., Herman, C., Orsini, G.M., Hirsch, A.H., Palma Avila, M., Testo, G., Jaramillo, S.A., Bolyen, E., et al.. (2023). Predicting neurodegenerative disease using prepathology gut microbiota composition: a longitudinal study in mice modeling Alzheimer’s disease pathologies. Microbiol. Spectr. 11: e0345822, https://doi.org/10.1128/spectrum.03458-22.Suche in Google Scholar

Bravo-Parra, M., Arenas-Padilla, M., Brcenas-Preciado, V., Hernández, J., and Mata-Haro, V. (2020). The probiotic BB12 induces MicroRNAs involved in antigen processing and presentation in porcine monocyte-derived dendritic cells. Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21030687.Suche in Google Scholar

Brunt, V.E., LaRocca, T.J., Bazzoni, A.E., Sapinsley, Z.J., Miyamoto-Ditmon, J., Gioscia-Ryan, R.A., Neilson, A.P., Link, C.D., and Seals, D.R. (2021). The gut microbiome-derived metabolite trimethylamine N-oxide modulates neuroinflammation and cognitive function with aging. GeroScience 43: 377–394, https://doi.org/10.1007/s11357-020-00257-2.Suche in Google Scholar

Buttini, M., Yu, G.-Q., Shockley, K., Huang, Y., Jones, B., Masliah, E., Mallory, M., Yeo, T., Longo, F.M., and Mucke, L. (2002). Modulation of Alzheimer-like synaptic and cholinergic deficits in transgenic mice by human apolipoprotein E depends on isoform, aging, and overexpression of amyloid beta peptides but not on plaque formation. J. Neurosci. Off. J. Soc. Neurosci. 22: 10539–10548, https://doi.org/10.1523/jneurosci.22-24-10539.2002.Suche in Google Scholar

Cammann, D., Lu, Y., Cummings, M.J., Zhang, M.L., Cue, J.M., Do, J., Ebersole, J., Chen, X., Oh, E.C., Cummings, J.L., et al.. (2023). Genetic correlations between Alzheimer’s disease and gut microbiome genera. Sci. Rep. 13: 5258, https://doi.org/10.1038/s41598-023-31730-5.Suche in Google Scholar

Caradonna, E., Nemni, R., Bifone, A., Gandolfo, P., Costantino, L., Giordano, L., Mormone, E., Macula, A., Cuomo, M., Difruscolo, R., et al. (2024). The brain--gut Axis, an important player in Alzheimer and Parkinson disease: a narrative review. J. Clin. Med. 13, https://doi.org/10.3390/jcm13144130.Suche in Google Scholar

Cardoso, A.L., Guedes, J.R., Pereira de Almeida, L., and Pedroso de Lima, M.C. (2012). miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production. Immunology 135: 73–88, https://doi.org/10.1111/j.1365-2567.2011.03514.x.Suche in Google Scholar

Cash, M.K., Rockwood, K., Fisk, J.D., and Darvesh, S. (2021). Clinicopathological correlations and cholinesterase expression in early-onset familial Alzheimer’s disease with the presenilin 1 mutation, Leu235Pro. Neurobiol. Aging 103: 31–41, https://doi.org/10.1016/j.neurobiolaging.2021.02.025.Suche in Google Scholar

Caspani, G. and Swann, J. (2019). Small talk: microbial metabolites involved in the signaling from microbiota to brain. Curr. Opin. Pharmacol. 48: 99–106, https://doi.org/10.1016/j.coph.2019.08.001.Suche in Google Scholar

Chen, L., Zhang, R., Li, P., Liu, Y., Qin, K., Fa, Z.-Q., Liu, Y.-J., Ke, Y.-Q., and Jiang, X.-D. (2013). P53-induced microRNA-107 inhibits proliferation of glioma cells and down-regulates the expression of CDK6 and Notch-2. Neurosci. Lett. 534: 327–332, https://doi.org/10.1016/j.neulet.2012.11.047.Suche in Google Scholar

Chen, F.-Z., Zhao, Y., and Chen, H.-Z. (2019). MicroRNA-98 reduces amyloid β-protein production and improves oxidative stress and mitochondrial dysfunction through the Notch signaling pathway via HEY2 in Alzheimer’s disease mice. Int. J. Mol. Med. 43: 91–102, https://doi.org/10.3892/ijmm.2018.3957.Suche in Google Scholar

Chen, F., Wang, Y., Wang, K., Chen, J., Jin, K., Peng, K., Chen, X., Liu, Z., Ouyang, J., Wang, Y., et al.. (2023a). Effects of Litsea cubeba essential oil on growth performance, blood antioxidation, immune function, apparent digestibility of nutrients, and fecal microflora of pigs. Front. Pharmacol. 14: 1166022, https://doi.org/10.3389/fphar.2023.1166022.Suche in Google Scholar

Chen, J., Bai, X., Wu, Q., Chen, L., Wang, H., and Zhang, J. (2023b). Exercise protects against cognitive injury and inflammation in Alzheimer’s disease through elevating miR-148a-3p. Neuroscience 513: 126–133, https://doi.org/10.1016/j.neuroscience.2023.01.008.Suche in Google Scholar

Chen, Y., Li, Y., Fan, Y., Chen, S., Chen, L., Chen, Y., and Chen, Y. (2024). Gut microbiota-driven metabolic alterations reveal gut-brain communication in Alzheimer’s disease model mice. Gut Microbes 16: 2302310, https://doi.org/10.1080/19490976.2024.2302310.Suche in Google Scholar

Cheng, X., Huang, J., Li, H., Zhao, D., Liu, Z., Zhu, L., Zhang, Z., and Peng, W. (2024). Quercetin: a promising therapy for diabetic encephalopathy through inhibition of hippocampal ferroptosis. Phytomedicine 126: 154887, https://doi.org/10.1016/j.phymed.2023.154887.Suche in Google Scholar

Cho, K.J., Song, J., Oh, Y., and Lee, J.E. (2015). MicroRNA-Let-7a regulates the function of microglia in inflammation. Mol. Cell Neurosci. 68: 167–176, https://doi.org/10.1016/j.mcn.2015.07.004.Suche in Google Scholar

Churchill, J.D., Galvez, R., Colcombe, S., Swain, R.A., Kramer, A.F., Greenough, W.T. (2002). Exercise, experience and the aging brain. Neurobiol. Aging 23: 941–955.Suche in Google Scholar

Colcombe, S. and Kramer, A.F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14: 125–130, https://doi.org/10.1111/1467-9280.t01-1-01430.Suche in Google Scholar

Cosín-Tomás, M., Alvarez-López, M.J., Sanchez-Roige, S., Lalanza, J.F., Bayod, S., Sanfeliu, C., Pallàs, M., Escorihuela, R.M., and Kaliman, P. (2014). Epigenetic alterations in hippocampus of SAMP8 senescent mice and modulation by voluntary physical exercise. Front. Aging Neurosci. 6: 51, https://doi.org/10.3389/fnagi.2014.00051.Suche in Google Scholar

Cuervo-Zanatta, D., Syeda, T., Sánchez-Valle, V., Irene-Fierro, M., Torres-Aguilar, P., Torres-Ramos, M.A., Shibayama-Salas, M., Silva-Olivares, A., Noriega, L.G., Torres, N., et al.. (2023). Dietary fiber modulates the release of gut bacterial products preventing cognitive decline in an Alzheimer’s mouse model. Cell. Mol. Neurobiol. 43: 1595–1618, https://doi.org/10.1007/s10571-022-01268-7.Suche in Google Scholar

Cunha, C., Gomes, C., Vaz, A.R., and Brites, D. (2016). Exploring new inflammatory biomarkers and pathways during LPS-induced M1 polarization. Mediators Inflamm. 2016: 6986175, https://doi.org/10.1155/2016/6986175.Suche in Google Scholar

Daniela, M., Grigoras, C., Cuciureanu, D., and Constantinescu, V. (2023). The circadian rhythm of arterial blood pressure in Alzheimer’s disease and vascular dementia. Acta. Neurol. Belg. 123: 129–137, https://doi.org/10.1007/s13760-021-01664-8.Suche in Google Scholar

Dao, A.T., Zagaar, M.A., Levine, A.T., Salim, S., Eriksen, J.L., and Alkadhi, K.A. (2013). Treadmill exercise prevents learning and memory impairment in Alzheimer’s disease-like pathology. Curr. Alzheimer Res. 10: 507–515, https://doi.org/10.2174/1567205011310050006.Suche in Google Scholar

Das, S., Ferlito, M., Kent, O.A., Fox-Talbot, K., Wang, R., Liu, D., Raghavachari, N., Yang, Y., Wheelan, S.J., Murphy, E., et al.. (2012). Nuclear miRNA regulates the mitochondrial genome in the heart. Circ. Res. 110: 1596–1603, https://doi.org/10.1161/circresaha.112.267732.Suche in Google Scholar

Das, S., Ramachandran, A.K., Halder, D., Akbar, S., Ahmed, B., and Joseph, A. (2023). Mechanistic and etiological similarities in diabetes mellitus and Alzheimer’s disease: antidiabetic drugs as optimistic therapeutics in Alzheimer’s disease. CNS Neurol. Disord. Drug Targets 22: 973–993, https://doi.org/10.2174/1871527321666220629162229.Suche in Google Scholar

de la Monte, S.M. and Wands, J.R. (2006). Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer’s disease. J. Alzheimers Dis. 9: 167–181, https://doi.org/10.3233/jad-2006-9209.Suche in Google Scholar

Delay, C., Mandemakers, W., and Hébert, S.S. (2012). MicroRNAs in Alzheimer’s disease. Neurobiol. Dis. 46: 285–290, https://doi.org/10.1016/j.nbd.2012.01.003.Suche in Google Scholar

Di Paolo, G. and Kim, T.-W. (2011). Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat. Rev. Neurosci. 12: 284–296, https://doi.org/10.1038/nrn3012.Suche in Google Scholar

Dias-Santagata, D., Fulga, T.A., Duttaroy, A., and Feany, M.B. (2007). Oxidative stress mediates tau-induced neurodegeneration in Drosophila. J. Clin. Invest. 117: 236–245, https://doi.org/10.1172/jci28769.Suche in Google Scholar

Dong, H.K., Gim, J.-A., Yeo, S.H., and Kim, H.-S. (2017). Integrated late onset Alzheimer’s disease (LOAD) susceptibility genes: cholesterol metabolism and trafficking perspectives. Gene 597: 10–16, https://doi.org/10.1016/j.gene.2016.10.022.Suche in Google Scholar

Dong, J., Liu, Y., Zhan, Z., and Wang, X. (2018). MicroRNA-132 is associated with the cognition improvement following voluntary exercise in SAMP8 mice. Brain Res. Bull 140: 80–87, https://doi.org/10.1016/j.brainresbull.2018.04.007.Suche in Google Scholar

Dong, L., Dong, F., Guo, P., Li, T., Fang, Y., Dong, Y., Xu, X., Cai, T., Liang, S., Song, X., et al.. (2025). Gut microbiota as a new target for hyperuricemia: a perspective from natural plant products. Phytomedicine 138: 156402, https://doi.org/10.1016/j.phymed.2025.156402.Suche in Google Scholar

Dorszewska, J., Oczkowska, A., Suwalska, M., Rozycka, A., Florczak-Wyspianska, J., Dezor, M., Lianeri, M., Jagodzinski, P.P., Kowalczyk, M.J., Prendecki, M., et al.. (2014a). Mutations in the exon 7 of Trp53 gene and the level of p53 protein in double transgenic mouse model of Alzheimer’s disease. Folia Neuropathol. 52: 30–40.Suche in Google Scholar

Dorszewska, J., Różycka, A., Oczkowska, A., Florczak-Wyspiańska, J., Prendecki, M., Dezor, M., Postrach, I., Jagodzinski, P.P., and Kozubski, W. (2014b). Mutations of TP53 gene and oxidative stress in Alzheimer’s disease patients. https://doi.org/10.4236/aad.2014.31004.Suche in Google Scholar

Dragomir, M.P., Knutsen, E., and Calin, G.A. (2018). SnapShot: unconventional miRNA functions. Cell 174: 1038–1038.e1, https://doi.org/10.1016/j.cell.2018.07.040.Suche in Google Scholar

Dungan, C.M., Valentino, T., Vechetti, I.J.Jr., Zdunek, C.J., Murphy, M.P., Lin, A.-L., McCarthy, J.J., Peterson, C.A., et al.. (2020). Exercise-mediated alteration of hippocampal Dicer mRNA and miRNAs is associated with lower BACE1 gene expression and Aβ(1-42) in female 3xTg-AD mice. J. Neurophysiol. 124: 1571–1577, https://doi.org/10.1152/jn.00503.2020.Suche in Google Scholar

El Fatimy, R., Li, S., Chen, Z., Mushannen, T., Gongala, S., Wei, Z., Balu, D.T., Rabinovsky, R., Cantlon, A., Elkhal, A., et al.. (2018). MicroRNA-132 provides neuroprotection for tauopathies via multiple signaling pathways. Acta Neuropathol. 136: 537–555, https://doi.org/10.1007/s00401-018-1880-5.Suche in Google Scholar

Erickson, K.I., Gildengers, A.G., and Butters, M.A. (2013). Physical activity and brain plasticity in late adulthood. Dialogues Clin. Neurosci. 15: 99–108, https://doi.org/10.31887/dcns.2013.15.1/kerickson.Suche in Google Scholar

Fan, J., Wang, L., Yang, T., Liu, J., Ge, W., Shen, J., and Wang, L. (2024). Comparative analysis of gut microbiota in incident and prevalent peritoneal dialysis patients with peritoneal fibrosis, correlations with peritoneal equilibration test data in the peritoneal fibrosis cohort. Ther. Apher. Dial. Off. peer-Reviewed J. Int. Soc. Apher. Japanese Soc. Apher. Japanese Soc. Dial. Ther.Suche in Google Scholar

Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F.H., and Christie, B.R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124: 71–79, https://doi.org/10.1016/j.neuroscience.2003.09.029.Suche in Google Scholar

Fennema, D., Phillips, I.R., and Shephard, E.A. (2016). Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-Mediated host-microbiome metabolic Axis implicated in health and disease. Drug Metab. Dispos. 44: 1839–1850, https://doi.org/10.1124/dmd.116.070615.Suche in Google Scholar

Fernandes, T., Hashimoto, N.Y., Magalhães, F.C., Fernandes, F.B., Casarini, D.E., Carmona, A.K., Krieger, J.E., Phillips, M.I., and Oliveira, E.M. (2011). Aerobic exercise training-induced left ventricular hypertrophy involves regulatory MicroRNAs, decreased angiotensin-converting enzyme-angiotensin ii, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1-7). Hypertens (Dallas, Tex 1979) 58: 182–189, https://doi.org/10.1161/HYPERTENSIONAHA.110.168252.Suche in Google Scholar

Friedman, R.C., Farh, K.K.-H., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19: 92–105, https://doi.org/10.1101/gr.082701.108.Suche in Google Scholar

Fuller, O.K., McLennan, E.D., Egan, C.L., Perera, N., Terry, L.V., Pyun, J., de Mendonca, M., Telles, G.D., Smeuninx, B., Burrows, E.L., et al.. (2025). Extracellular vesicles contribute to the beneficial effects of exercise training in APP/PS1 mice. iScience 28: 111752, https://doi.org/10.1016/j.isci.2025.111752.Suche in Google Scholar

Funamoto, S., Tagami, S., Okochi, M., and Morishima-Kawashima, M. (2020). Successive cleavage of β-amyloid precursor protein by γ-secretase. Semin. Cell Dev. Biol. 105: 64–74, https://doi.org/10.1016/j.semcdb.2020.04.002.Suche in Google Scholar

Gao, X.-H., Tang, J.-J., Liu, H.-R., Liu, L.-B., and Liu, Y.-Z. (2019). Structure-activity study of fluorine or chlorine-substituted cinnamic acid derivatives with tertiary amine side chain in acetylcholinesterase and butyrylcholinesterase inhibition. Drug Dev. Res. 80: 438–445, https://doi.org/10.1002/ddr.21515.Suche in Google Scholar

Garcia, A.N.M., Muniz, M.T.C., Souza e Silva, H.R., Albuquerque da Silva, H., and Athayde-Junior, L. (2009). Cyp46 polymorphisms in Alzheimer’s disease: a review. J. Mol. Neurosci. 39: 342–345, https://doi.org/10.1007/s12031-009-9227-2.Suche in Google Scholar

García-Mesa, Y., López-Ramos, J.C., Giménez-Llort, L., Revilla, S., Guerra, R., Gruart, A., Laferla, F.M., Cristòfol, R., Delgado-García, J.M., and Sanfeliu, C. (2011). Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice. J. Alzheimers Dis. 24: 421–454.Suche in Google Scholar

Gholami, A., Dehghan, G., Rashtbari, S., and Jouyban, A. (2022). Probing the interactions of lamotrigine and phenobarbital with tau protein: experimental and molecular modeling studies. Iran J. Pharm. Res. IJPR 21: e129599, https://doi.org/10.5812/ijpr-129599.Suche in Google Scholar

González Cordero, E.M., Cuevas-Budhart, M.A., Pérez Morán, D., Trejo Villeda, M.A., and Gomez-Del-Pulgar G-Madrid, M. (2022). Relationship between the gut microbiota and Alzheimer’s disease: a systematic review. J. Alzheimers Dis. 87: 519-–528, https://doi.org/10.3233/JAD-215224.Suche in Google Scholar

González-Domínguez, R., García-Barrera, T., Vitorica, J., and Gómez-Ariza, J.L. (2015). Metabolomic investigation of systemic manifestations associated with Alzheimer’s disease in the APP/PS1 transgenic mouse model. Mol. Biosyst. 11: 2429–2440, https://doi.org/10.1039/c4mb00747f.Suche in Google Scholar

González-Foruria, I., Santulli, P., Chouzenoux, S., Carmona, F., Chapron, C., and Batteux, F. (2017). Dysregulation of the ADAM17/Notch signalling pathways in endometriosis: from oxidative stress to fibrosis. Mol. Hum. Reprod. 23: 488–499, https://doi.org/10.1093/molehr/gax028.Suche in Google Scholar

Graves, A.B., White, E., Koepsell, T.D., Reifler, B.V., van Belle, G., Larson, E.B., and Raskind, M. (1990). The association between head trauma and Alzheimer’s disease. Am. J. Epidemiol. 131: 491–501, https://doi.org/10.1093/oxfordjournals.aje.a115523.Suche in Google Scholar

Groot, C., Hooghiemstra, A.M., Raijmakers, P.G.H.M., van Berckel, B.N.M., Scheltens, P., Scherder, E.J.A., van der Flier, W.M., and Ossenkoppele, R. (2016). The effect of physical activity on cognitive function in patients with dementia: a meta-analysis of randomized control trials. Ageing Res. Rev. 25: 13–23, https://doi.org/10.1016/j.arr.2015.11.005.Suche in Google Scholar

Gu, X., Zhou, J., Zhou, Y., Wang, H., Si, N., Ren, W., Zhao, W., Fan, X., Gao, W., Wei, X., et al.. (2021). Huanglian Jiedu decoction remodels the periphery microenvironment to inhibit Alzheimer’s disease progression based on the “brain-gut” axis through multiple integrated omics. Alzheimers Res. Ther. 13: 44, https://doi.org/10.1186/s13195-021-00779-7.Suche in Google Scholar

Guedes, J., Cardoso, A.L.C., and Pedroso de Lima, M.C. (2013). Involvement of microRNA in microglia-mediated immune response. Clin. Dev. Immunol. 2013: 186872, https://doi.org/10.1155/2013/186872.Suche in Google Scholar

Guedes, J.R., Custódia, C.M., Silva, R.J., de Almeida, L.P., Pedroso de Lima, M.C., and Cardoso, A.L. (2014). Early miR-155 upregulation contributes to neuroinflammation in Alzheimer’s disease triple transgenic mouse model. Hum. Mol. Genet. 23: 6286–6301, https://doi.org/10.1093/hmg/ddu348.Suche in Google Scholar

Gueli, M.C. and Taibi, G. (2013). Alzheimer’s disease: amino acid levels and brain metabolic status. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 34: 1575–1579, https://doi.org/10.1007/s10072-013-1289-9.Suche in Google Scholar

Guo, X.-D., Sun, G.-L., Zhou, T.-T., Wang, Y.-Y., Xu, X., Shi, X.-F., Zhu, Z.-Y., Rukachaisirikul, V., Hu, L.-H., and Shen, X. (2017). LX2343 alleviates cognitive impairments in AD model rats by inhibiting oxidative stress-induced neuronal apoptosis and tauopathy. Acta Pharmacol. Sin. 38: 1104–1119, https://doi.org/10.1038/aps.2016.128.Suche in Google Scholar

Harper, S.J., Cowell, S.J., and Dawson, W.O. (2019). Changes in host microRNA expression during citrus tristeza virus induced disease. J. Citrus. Pathol., https://doi.org/10.5070/c461041164.Suche in Google Scholar

Harris, T.A., Yamakuchi, M., Ferlito, M., Mendell, J.T., and Lowenstein, C.J. (2008). MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc. Natl. Acad. Sci. U S A 105: 1516–1521, https://doi.org/10.1073/pnas.0707493105.Suche in Google Scholar

Hébert, S.S., Horré, K., Nicolaï, L., Papadopoulou, A.S., Mandemakers, W., Silahtaroglu, A.N., Kauppinen, S., Delacourte, A., and De Strooper, B. (2008a). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc. Natl. Acad. Sci. 105: 6415–6420, https://doi.org/10.1073/pnas.0710263105.Suche in Google Scholar

Hébert, S.S., Horré, K., Nicolaï, L., Papadopoulou, A.S., Mandemakers, W., Silahtaroglu, A.N., Kauppinen, S., Delacourte, A., and De Strooper, B. (2008b). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc. Natl. Acad. Sci. U S A 105: 6415–6420, https://doi.org/10.1073/pnas.0710263105.Suche in Google Scholar

Hébert, S.S., Horré, K., Nicolaï, L., Bergmans, B., Papadopoulou, A.S., Delacourte, A., and De Strooper, B. (2009). MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol. Dis. 33: 422–428, https://doi.org/10.1016/j.nbd.2008.11.009.Suche in Google Scholar

Hewel, C., Kaiser, J., Wierczeiko, A., Linke, J., Reinhardt, C., Endres, K., and Gerber, S. (2019). Common miRNA patterns of Alzheimer’s disease and Parkinson’s disease and their putative impact on commensal gut microbiota. Front. Neurosci. 13: 113, https://doi.org/10.3389/fnins.2019.00113.Suche in Google Scholar

Heyn, P., Abreu, B.C., and Ottenbacher, K.J. (2004). The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch. Phys. Med. Rehabil. 85: 1694-–1704.Suche in Google Scholar

Hill, J.M., Pogue, A.I., and Lukiw, W.J. (2015). Pathogenic microRNAs common to brain and retinal degeneration; recent observations in Alzheimer’s disease and age-related macular degeneration. Front. Neurol. 6: 232, https://doi.org/10.3389/fneur.2015.00232.Suche in Google Scholar

Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S.G., Croteau, D.L., and Bohr, V.A. (2019). Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15: 565-–581, https://doi.org/10.1038/s41582-019-0244-7.Suche in Google Scholar

Huang, D., Liu, D., Yin, J., Qian, T., Shrestha, S., and Ni, H. (2017). Glutamate-glutamine and GABA in brain of normal aged and patients with cognitive impairment. Eur. Radiol. 27: 2698-–2705, https://doi.org/10.1007/s00330-016-4669-8.Suche in Google Scholar

Huang, L., Li, Y., Tang, R., Yang, P., Zhuo, Y., Jiang, X., Che, L., Lin, Y., Xu, S., Li, J., et al.. (2024). Bile acids metabolism in the gut-liver axis mediates liver injury during lactation. Life Sci. 338: 122380, https://doi.org/10.1016/j.lfs.2023.122380.Suche in Google Scholar

Hutchison, E.R., Kawamoto, E.M., Taub, D.D., Lal, A., Abdelmohsen, K., Zhang, Y., Wood, W.H.3rd, Lehrmann, E., Camandola, S., Becker, K.G., et al.. (2013). Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia 61: 1018–1028, https://doi.org/10.1002/glia.22483.Suche in Google Scholar

Inagaki, T., Moschetta, A., Lee, Y.-K., Peng, L., Zhao, G., Downes, M., Yu, R.T., Shelton, J.M., Richardson, J.A., Repa, J.J., et al.. (2006). Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl. Acad. Sci. U S A 103: 3920–3925, https://doi.org/10.1073/pnas.0509592103.Suche in Google Scholar

Ipsaro, J.J. and Joshua-Tor, L. (2015). From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat. Struct. Mol. Biol. 22: 20–28, https://doi.org/10.1038/nsmb.2931.Suche in Google Scholar

Islam, K.B.M.S., Fukiya, S., Hagio, M., Fujii, N., Ishizuka, S., Ooka, T., Ogura, Y., Hayashi, T., and Yokota, A. (2011). Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141: 1773–1781, https://doi.org/10.1053/j.gastro.2011.07.046.Suche in Google Scholar

Jiang, H., Jayadev, S., Lardelli, M., and Newman, M. (2018). A review of the familial Alzheimer’s disease locus PRESENILIN 2 and its relationship to PRESENILIN 1. J. Alzheimers Dis. 66: 1323–1339, https://doi.org/10.3233/jad-180656.Suche in Google Scholar

Jiao, W.-E., Wei, J.-F., Kong, Y.-G., Xu, Y., Tao, Z.-Z., and Chen, S.-M. (2019). Notch signaling promotes development of allergic rhinitis by suppressing Foxp3 expression and treg cell differentiation. Int. Arch. Allergy Immunol. 178: 33–44, https://doi.org/10.1159/000493328.Suche in Google Scholar

Jiménez-Jiménez, F.J., Molina, J.A., Gómez, P., Vargas, C., de Bustos, F., Benito-León, J., Tallón-Barranco, A., Ortí-Pareja, M., Gasalla, T., and Arenas, J. (1998). Neurotransmitter amino acids in cerebrospinal fluid of patients with Alzheimer’s disease. J. Neural. Transm. 105: 269–277, https://doi.org/10.1007/s007020050056.Suche in Google Scholar

Jin, Y., Tu, Q., and Liu, M. (2018). MicroRNA-125b regulates Alzheimer’s disease through SphK1 regulation. Mol. Med. Rep. 18: 2373–2380, https://doi.org/10.3892/mmr.2018.9156.Suche in Google Scholar

Jin, Y., Kim, T., and Kang, H. (2023). Forced treadmill running modifies gut microbiota with alleviations of cognitive impairment and Alzheimer’s disease pathology in 3xTg-AD mice. Physiol. Behav. 264: 114145, https://doi.org/10.1016/j.physbeh.2023.114145.Suche in Google Scholar

Jinek, M. and Doudna, J.A. (2009). A three-dimensional view of the molecular machinery of RNA interference. Nature 457: 405–412, https://doi.org/10.1038/nature07755.Suche in Google Scholar

Jo, J., Whitcomb, D.J., Olsen, K.M., Kerrigan, T.L., Shih-Ching Lo, S.C., Bru-Mercier, G., Dickinson, B., Scullion, S., Sheng, M., Collingridge, G., et al.. (2011). Aβ(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3β. Nat. Neurosci. 14: 545–547.Suche in Google Scholar

Joubert, S., Gour, N., Guedj, E., Didic, M., Guériot, C., Koric, L., Ranjeva, J.-P., Felician, O., Guye, M., and Ceccaldi, M. (2016). Early-onset and late-onset Alzheimer’s disease are associated with distinct patterns of memory impairment. Cortex 74: 217–232, https://doi.org/10.1016/j.cortex.2015.10.014.Suche in Google Scholar

Jullienne, A., Trinh, M.V., and Obenaus, A. (2022). Neuroimaging of mouse models of Alzheimer’s disease. Biomedicines 10, https://doi.org/10.3390/biomedicines10020305.Suche in Google Scholar

Kaliman, P., Párrizas, M., Lalanza, J.F., Camins, A., Escorihuela, R.M., and Pallàs, M. (2011). Neurophysiological and epigenetic effects of physical exercise on the aging process. Ageing Res. Rev. 10: 475–486, https://doi.org/10.1016/j.arr.2011.05.002.Suche in Google Scholar

Kenyon, C.J. (2010). The genetics of ageing. Nature 464: 504–512, https://doi.org/10.1038/nature08980.Suche in Google Scholar

Kim, J., Yoon, H., Chung, D.-E., Brown, J.L., Belmonte, K.C., and Kim, J. (2016a). miR-186 is decreased in aged brain and suppresses BACE1 expression. J. Neurochem. 137: 436–445, https://doi.org/10.1111/jnc.13507.Suche in Google Scholar

Kim, W., Noh, H., Lee, Y., Jeon, J., Shanmugavadivu, A., McPhie, D.L., Kim, K.-S., Cohen, B.M., Seo, H., and Sonntag, K.C. (2016b). MiR-126 regulates growth factor activities and vulnerability to toxic insult in neurons. Mol. Neurobiol. 53: 95–108, https://doi.org/10.1007/s12035-014-8989-x.Suche in Google Scholar

Kim, S.-H., Lim, K.-H., Yang, S., and Joo, J.-Y. (2023). Boosting of tau protein aggregation by CD40 and CD48 gene expression in Alzheimer’s disease. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 37: e22702, https://doi.org/10.1096/fj.202201197r.Suche in Google Scholar

Kou, X., Li, J., Liu, X., Chang, J., Zhao, Q., Jia, S., Fan, J., and Chen, N. (2017). Swimming attenuates d-galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics. J. Appl. Physiol. 122: 1462–1469, https://doi.org/10.1152/japplphysiol.00018.2017.Suche in Google Scholar

Kou, X., Chen, D., and Chen, N. (2020). The regulation of microRNAs in Alzheimer’s disease. Front. Neurol. 11, https://doi.org/10.3389/fneur.2020.00288.Suche in Google Scholar

Kumar, A., Rani, A., Tchigranova, O., Lee, W.-H., and Foster, T.C. (2012). Influence of late-life exposure to environmental enrichment or exercise on hippocampal function and CA1 senescent physiology. Neurobiol. Aging 33: 828.e1–17, https://doi.org/10.1016/j.neurobiolaging.2011.06.023.Suche in Google Scholar

Kumar, N.N., Chan, Y.L., Chen, H., and Oliver, B.G. (2023). Editorial: effects of environmental toxins on brain health and development. Front. Mol. Neurosci. 16: 1149776, https://doi.org/10.3389/fnmol.2023.1149776.Suche in Google Scholar

Lanfranco, M.F., Ng, C.A., and Rebeck, G.W. (2020). ApoE lipidation as a therapeutic target in Alzheimer’s disease. Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21176336.Suche in Google Scholar

Lauressergues, D., Couzigou, J.-M., San Clemente, H., Martinez, Y., Dunand, C., Bécard, G., and Combier, J.-P. (2015). Primary transcripts of microRNAs encode regulatory peptides. Nature 520: 90–93, https://doi.org/10.1038/nature14346.Suche in Google Scholar

Lee, H., Han, S., Kwon, C.S., and Lee, D. (2016). Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell 7: 100-–113, https://doi.org/10.1007/s13238-015-0212-y.Suche in Google Scholar

Lee, S., Cho, H.-J., and Ryu, J.-H. (2021). Innate immunity and cell death in Alzheimer’s disease. ASN Neuro 13: 17590914211051908, https://doi.org/10.1177/17590914211051908.Suche in Google Scholar

Lehmann, S.M., Krüger, C., Park, B., Derkow, K., Rosenberger, K., Baumgart, J., Trimbuch, T., Eom, G., Hinz, M., Kaul, D., et al.. (2012). An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat. Neurosci. 15: 827–835, https://doi.org/10.1038/nn.3113.Suche in Google Scholar

Li, N., Bates, D.J., An, J., Terry, D.A., and Wang, E. (2011). Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol. Aging 32: 944–955, https://doi.org/10.1016/j.neurobiolaging.2009.04.020.Suche in Google Scholar

Li, J.J., Dolios, G., Wang, R., and Liao, F.-F. (2014). Soluble beta-amyloid peptides, but not insoluble fibrils, have specific effect on neuronal microRNA expression. PLoS One 9: e90770, https://doi.org/10.1371/journal.pone.0090770.Suche in Google Scholar

Li, J., Chen, W., Yi, Y., and Tong, Q. (2019). miR-219-5p inhibits tau phosphorylation by targeting TTBK1 and GSK-3β in Alzheimer’s disease. J. Cell Biochem. 120: 9936–9946, https://doi.org/10.1002/jcb.28276.Suche in Google Scholar

Li, Z., Chen, Q., Liu, J., and Du, Y. (2020). Physical exercise ameliorates the cognitive function and attenuates the neuroinflammation of Alzheimer’s disease via miR-129-5p. Dement. Geriatr. Cogn Disord. 49: 163–169, https://doi.org/10.1159/000507285.Suche in Google Scholar

Li, H., Tan, Y., Cheng, X., Zhang, Z., Huang, J., Hui, S., Zhu, L., Liu, Y., Zhao, D., Liu, Z., et al.. (2022). Untargeted metabolomics analysis of the hippocampus and cerebral cortex identified the neuroprotective mechanisms of Bushen Tiansui formula in an aβ(25-35)-induced rat model of Alzheimer’s disease. Front. Pharmacol. 13: 990307, https://doi.org/10.3389/fphar.2022.990307.Suche in Google Scholar

Li, Y., He, X., Sun, B., Hu, N., Li, J., You, R., Tao, F., Fang, L., Li, Y., and Zhai, Q. (2024a). Combined exposure of beta-cypermethrin and emamectin benzoate interferes with the HPO axis through oxidative stress, causing an imbalance of hormone homeostasis in female rats. Reprod. Toxicol. 123: 108502, https://doi.org/10.1016/j.reprotox.2023.108502.Suche in Google Scholar

Li, Y.-B., Fu, Q., Guo, M., Du, Y., Chen, Y., and Cheng, Y. (2024b). MicroRNAs: pioneering regulators in Alzheimer’s disease pathogenesis, diagnosis, and therapy. Transl. Psychiatry 14: 367, https://doi.org/10.1038/s41398-024-03075-8.Suche in Google Scholar

Li, Y.-Y., Zhou, L.-W., Qian, F.-C., Fang, Q.-L., Yu, Z.-M., Cui, T., Dong, F.-J., Cai, F.-H., Yu, T.-T., Li, L.-D., et al.. (2025). scImmOmics: a manually curated resource of single-cell multi-omics immune data. Nucleic Acids Res. 53: D1162–D1172, https://doi.org/10.1093/nar/gkae985.Suche in Google Scholar

Liang, C., Zhu, H., Xu, Y., Huang, L., Ma, C., Deng, W., Liu, Y., and Qin, C. (2012). MicroRNA-153 negatively regulates the expression of amyloid precursor protein and amyloid precursor-like protein 2. Brain Res. 1455: 103–113, https://doi.org/10.1016/j.brainres.2011.10.051.Suche in Google Scholar

Liang, C., Zou, T., Zhang, M., Fan, W., Zhang, T., Jiang, Y., Cai, Y., Chen, F., Chen, X., Sun, Y., et al.. (2021). MicroRNA-146a switches microglial phenotypes to resist the pathological processes and cognitive degradation of Alzheimer’s disease. Theranostics 11: 4103–4121, https://doi.org/10.7150/thno.53418.Suche in Google Scholar

Liu, R.-M. (2022). Aging, cellular senescence, and Alzheimer’s disease. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms23041989.Suche in Google Scholar

Liu, W., Liu, C., Zhu, J., Shu, P., Yin, B., Gong, Y., Qiang, B., Yuan, J., and Peng, X. (2012). MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer’s-associated pathogenesis in SAMP8 mice. Neurobiol. Aging 33: 522–534, https://doi.org/10.1016/j.neurobiolaging.2010.04.034.Suche in Google Scholar

Liu, Q.Y., Vera Chang, M.N., Lei, J.X., Koukiekolo, R., Smith, B., Zhang, D., and Ghribi, O. (2014). Identification of microRNAs involved in Alzheimer’s progression using a rabbit model of the disease. Am. J. Neurodegener. Dis. 3: 33–44.Suche in Google Scholar

Liu, S., da, Cunha A.P., Rezende, R.M., Cialic, R., Wei, Z., Bry, L., Comstock, L.E., Gandhi, R., and Weiner, H.L. (2016). The host shapes the gut microbiota via fecal MicroRNA. Cell Host Microbe. 19: 32–43, https://doi.org/10.1016/j.chom.2015.12.005.Suche in Google Scholar

Liu, D., Zhao, D., Zhao, Y., Wang, Y., Zhao, Y., and Wen, C. (2019). Inhibition of microRNA-155 alleviates cognitive impairment in Alzheimer’s disease and involvement of neuroinflammation. Curr. Alzheimer Res. 16: 473–482, https://doi.org/10.2174/1567205016666190503145207.Suche in Google Scholar

Liu, G.-J., Zhang, Q.-R., Gao, X., Wang, H., Tao, T., Gao, Y.-Y., Zhou, Y., Chen, X.-X., Li, W., and Hang, C.-H. (2020). MiR-146a ameliorates hemoglobin-induced microglial inflammatory response via TLR4/IRAK1/TRAF6 associated pathways. Front. Neurosci. 14: 311, https://doi.org/10.3389/fnins.2020.00311.Suche in Google Scholar

Liu, Y., Meng, X.-K., Shao, W.-Z., Liu, Y.-Q., Tang, C., Deng, S.-S., Tang, C.-F., Zheng, L., and Guo, W. (2024). miR-34a/TAN1/CREB Axis engages in alleviating oligodendrocyte trophic factor-induced myelin repair function and astrocyte-dependent neuroinflammation in the early stages of Alzheimer’s disease: the anti-neurodegenerative effect of treadmill exercise. Neurochem. Res. 49: 1105–1120, https://doi.org/10.1007/s11064-024-04108-w.Suche in Google Scholar

Long, J.M. and Lahiri, D.K. (2011). MicroRNA-101 downregulates Alzheimer’s amyloid-β precursor protein levels in human cell cultures and is differentially expressed. Biochem. Biophys. Res. Commun. 404: 889–895, https://doi.org/10.1016/j.bbrc.2010.12.053.Suche in Google Scholar

Long, J.M., Maloney, B., Rogers, J.T., and Lahiri, D.K. (2019). Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5’-untranslated region: implications in Alzheimer’s disease. Mol. Psychiatry 24: 345–363, https://doi.org/10.1038/s41380-018-0266-3.Suche in Google Scholar

Lu, Q.-Q., Chen, Y.-M., Liu, H.-R., Yan, J.-Y., Cui, P.-W., Zhang, Q.-F., Gao, X.-H., Feng, X., and Liu, Y.-Z. (2020). Nitrogen-containing flavonoid and their analogs with diverse B-ring in acetylcholinesterase and butyrylcholinesterase inhibition. Drug Dev. Res. 81: 1037-–1047, https://doi.org/10.1002/ddr.21726.Suche in Google Scholar

Lu, L., Dai, W.-Z., Zhu, X.-C., and Ma, T. (2021). Analysis of serum miRNAs in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 36: 15333175211021712, https://doi.org/10.1177/15333175211021712.Suche in Google Scholar

Lu, J., Liu, L., Chen, J., Zhi, J., Li, J., Li, L., and Jiang, Z. (2022). The involvement of lncRNA HOTAIR/miR-130a-3p Axis in the regulation of voluntary exercise on cognition and inflammation of Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 37: 15333175221091424, https://doi.org/10.1177/15333175221091424.Suche in Google Scholar

Lukiw, W.J. (2012). NF-кB-regulated micro RNAs (miRNAs) in primary human brain cells. Exp. Neurol. 235: 484–490, https://doi.org/10.1016/j.expneurol.2011.11.022.Suche in Google Scholar

Lukiw, W.J. (2020). microRNA-146a signaling in Alzheimer’s disease (AD) and prion disease (PrD). Front. Neurol. 11: 462, https://doi.org/10.3389/fneur.2020.00462.Suche in Google Scholar

Luo, H., Xiang, Y., Qu, X., Liu, H., Liu, C., Li, G., Han, L., and Qin, X. (2019). Apelin-13 suppresses neuroinflammation against cognitive deficit in a streptozotocin-induced rat model of Alzheimer’s disease through activation of BDNF-TrkB signaling pathway. Front. Pharmacol. 10: 395, https://doi.org/10.3389/fphar.2019.00395.Suche in Google Scholar

Ma, T., Sun, X., Sun, S.-K., Guo, R., and Ma, X. (2016). The study of peripheral blood miR-29a/101 in the diagnosis of Alzheimer’s disease. Chin. J. Behav. Med. Brain Sci. 25: 1010–1014.Suche in Google Scholar

Maciotta, S., Meregalli, M., and Torrente, Y. (2013). The involvement of microRNAs in neurodegenerative diseases. Front. Cell Neurosci. 7: 265, https://doi.org/10.3389/fncel.2013.00265.Suche in Google Scholar

Magarian, B.J., Longman, R.S., Iliev, I.D., Sonnenberg, G.F., and Artis, D. (2017). Regulation of inflammation by microbiota interactions with the host. Nat. Immunol. 18: 851–860, https://doi.org/10.1038/ni.3780.Suche in Google Scholar

Mai, H., Fan, W., Wang, Y., Cai, Y., Li, X., Chen, F., Chen, X., Yang, J., Tang, P., Chen, H., et al.. (2019). Intranasal administration of miR-146a agomir rescued the pathological process and cognitive impairment in an AD mouse model. Mol. Ther. Nucleic Acids 18: 681–695, https://doi.org/10.1016/j.omtn.2019.10.002.Suche in Google Scholar

Manyevitch, R., Protas, M., Scarpiello, S., Deliso, M., Bass, B., Nanajian, A., Chang, M., Thompson, S.M., Khoury, N., Gonnella, R., et al.. (2018). Evaluation of metabolic and synaptic dysfunction hypotheses of Alzheimer’s disease (AD): a meta-analysis of CSF markers. Curr. Alzheimer Res. 15: 164–181, https://doi.org/10.2174/1567205014666170921122458.Suche in Google Scholar

Marques-Aleixo, I., Santos-Alves, E., Balça, M.M., Moreira, P.I., Oliveira, P.J., Magalhães, J., and Ascensão, A. (2016). Physical exercise mitigates doxorubicin-induced brain cortex and cerebellum mitochondrial alterations and cellular quality control signaling. Mitochondrion 26: 43–57, https://doi.org/10.1016/j.mito.2015.12.002.Suche in Google Scholar

Martin, C.R., Osadchiy, V., Kalani, A., and Mayer, E.A. (2018). The brain-gut-microbiome Axis. Cell Mol. Gastroenterol. Hepatol. 6: 133–148, https://doi.org/10.1016/j.jcmgh.2018.04.003.Suche in Google Scholar

Matsui, M., Chu, Y., Zhang, H., Gagnon, K.T., Shaikh, S., Kuchimanchi, S., Manoharan, M., Corey, D.R., and Janowski, B.A. (2013). Promoter RNA links transcriptional regulation of inflammatory pathway genes. Nucleic Acids Res. 41: 10086–10109, https://doi.org/10.1093/nar/gkt777.Suche in Google Scholar

Mayer, E.A., Tillisch, K., and Gupta, A. (2015). Gut/brain axis and the microbiota. J. Clin. Invest. 125: 926–938, https://doi.org/10.1172/jci76304.Suche in Google Scholar

Mendez, M.F. (2012). Early-onset Alzheimer’s disease: nonamnestic subtypes and type 2 AD. Arch. Med. Res. 43: 677–685, https://doi.org/10.1016/j.arcmed.2012.11.009.Suche in Google Scholar

Mendez, M.F., Lee, A.S., Karve, S.J., and Shapira, J.S. (2012). Nonamnestic presentations of early-onset Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 27: 413–420, https://doi.org/10.1177/1533317512454711.Suche in Google Scholar

Mirochnic, S., Wolf, S., Staufenbiel, M., and Kempermann, G. (2009). Age effects on the regulation of adult hippocampal neurogenesis by physical activity and environmental enrichment in the APP23 mouse model of Alzheimer disease. Hippocampus 19: 1008–1018, https://doi.org/10.1002/hipo.20560.Suche in Google Scholar

Mockett, B.G. and Ryan, M.M. (2023). The therapeutic potential of the neuroactive peptides of soluble amyloid precursor protein-alpha in Alzheimer’s disease and related neurological disorders. Semin. Cell Dev. Biol. 139: 93–101, https://doi.org/10.1016/j.semcdb.2022.05.014.Suche in Google Scholar

Montiel-Castro, A.J., González-Cervantes, R.M., Bravo-Ruiseco, G., and Pacheco-López, G. (2013). The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Front. Integr. Neurosci. 7: 70, https://doi.org/10.3389/fnint.2013.00070.Suche in Google Scholar

Moore, K.B.E., Hung, T.-J., and Fortin, J.S. (2023). Hyperphosphorylated tau (p-tau) and drug discovery in the context of Alzheimer’s disease and related tauopathies. Drug Discov. Today 28: 103487, https://doi.org/10.1016/j.drudis.2023.103487.Suche in Google Scholar

Mor, E., Cabilly, Y., Goldshmit, Y., Zalts, H., Modai, S., Edry, L., Elroy-Stein, O., and Shomron, N. (2011). Species-specific microRNA roles elucidated following astrocyte activation. Nucleic Acids Res. 39: 3710–3723, https://doi.org/10.1093/nar/gkq1325.Suche in Google Scholar

Mucke, L., Masliah, E., Yu, G.Q., Mallory, M., Rockenstein, E.M., Tatsuno, G., Hu, K., Kholodenko, D., Johnson-Wood, K., and McConlogue, L. (2000). High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. Off. J. Soc. Neurosci. 20: 4050–4058, https://doi.org/10.1523/jneurosci.20-11-04050.2000.Suche in Google Scholar

Nahid, M.A., Satoh, M., and Chan, E.K.L. (2011). Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling. J. Immunol. 186: 1723–1734, https://doi.org/10.4049/jimmunol.1002311.Suche in Google Scholar

Nakamura, T., Kawarabayashi, T., Ueda, T., Shimomura, S., Hoshino, M., Itoh, K., Ihara, K., Nakaji, S., Takatama, M., Ikeda, Y., et al.. (2023). Plasma ApoE4 levels are lower than ApoE2 and ApoE3 levels, and not associated with plasma Aβ40/42 ratio as a biomarker of amyloid-β amyloidosis in Alzheimer’s disease. J. Alzheimers Dis. 93: 333–348, https://doi.org/10.3233/jad-220996.Suche in Google Scholar

Nakano, M., Kubota, K., Kobayashi, E., Chikenji, T.S., Saito, Y., Konari, N., and Fujimiya, M. (2020). Bone marrow-derived mesenchymal stem cells improve cognitive impairment in an Alzheimer’s disease model by increasing the expression of microRNA-146a in hippocampus. Sci. Rep. 10: 10772, https://doi.org/10.1038/s41598-020-67460-1.Suche in Google Scholar

Naseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linløkken, A., Wilson, R., and Rudi, K. (2014). Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil. 26: 1155–1162, https://doi.org/10.1111/nmo.12378.Suche in Google Scholar

Nejman-Faleńczyk, B., Bloch, S., Licznerska, K., Dydecka, A., Felczykowska, A., Topka, G., Węgrzyn, A., and Węgrzyn, G. (2015). A small, microRNA-size, ribonucleic acid regulating gene expression and development of Shiga toxin-converting bacteriophage Φ24Β. Sci. Rep. 5: 10080, https://doi.org/10.1038/srep10080.Suche in Google Scholar

Nguyen, K.V. (2019). β-Amyloid precursor protein (APP) and the human diseases. AIMS Neurosci. 6: 273–281, https://doi.org/10.3934/Neuroscience.2019.4.273.Suche in Google Scholar

Nguyen, M., He, T., An, L., Alexander, D.C., Feng, J., and Yeo, B.T.T. (2020). Predicting Alzheimer’s disease progression using deep recurrent neural networks. Neuroimage 222: 117203, https://doi.org/10.1016/j.neuroimage.2020.117203.Suche in Google Scholar

Nichol, K.E., Parachikova, A.I., and Cotman, C.W. (2007). Three weeks of running wheel exposure improves cognitive performance in the aged Tg2576 mouse. Behav. Brain. Res. 184: 124–132, https://doi.org/10.1016/j.bbr.2007.06.027.Suche in Google Scholar

Nichol, K., Deeny, S.P., Seif, J., Camaclang, K., and Cotman, C.W. (2009). Exercise improves cognition and hippocampal plasticity in APOE epsilon4 mice. Alzheimers Dem. 5: 287–294, https://doi.org/10.1016/j.jalz.2009.02.006.Suche in Google Scholar

Nicolas, S., Dohm-Hansen, S., Lavelle, A., Bastiaanssen, T.F.S., English, J.A., Cryan, J.F., and Nolan, Y.M. (2024). Exercise mitigates a gut microbiota-mediated reduction in adult hippocampal neurogenesis and associated behaviours in rats. Transl. Psychiatry 14: 195, https://doi.org/10.1038/s41398-024-02904-0.Suche in Google Scholar

Nielsen, S., Åkerström, T., Rinnov, A., Yfanti, C., Scheele, C., Pedersen, B.K., and Laye, M.J. (2014). The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS One 9: e87308, https://doi.org/10.1371/journal.pone.0087308.Suche in Google Scholar

Nikolic, I., Plate, K.-H., and Schmidt, M.H.H. (2010). EGFL7 meets miRNA-126: an angiogenesis alliance. J. Angiogenes Res. 2: 9, https://doi.org/10.1186/2040-2384-2-9.Suche in Google Scholar

O’Callaghan, R.M., Ohle, R., and Kelly, A.M. (2007). The effects of forced exercise on hippocampal plasticity in the rat: a comparison of LTP, spatial- and non-spatial learning. Behav. Brain Res. 176: 362-–366.Suche in Google Scholar

O’Connell, R.M., Taganov, K.D., Boldin, M.P., Cheng, G., and Baltimore, D. (2007). MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl. Acad. Sci. U S A 104: 1604–1609, https://doi.org/10.1073/pnas.0610731104.Suche in Google Scholar

Ornish, D., Madison, C., Kivipelto, M., Kemp, C., McCulloch, C.E., Galasko, D., Artz, J., Rentz, D., Lin, J., Norman, K., et al.. (2024). Effects of intensive lifestyle changes on the progression of mild cognitive impairment or early dementia due to Alzheimer’s disease: a randomized, controlled clinical trial. Alzheimers Res. Ther. 16: 122, https://doi.org/10.1186/s13195-024-01482-z.Suche in Google Scholar

Pal, I. and Dey, S.G. (2023). The role of heme and copper in Alzheimer’s disease and type 2 diabetes mellitus. JACS Au. 3: 657–681, https://doi.org/10.1021/jacsau.2c00572.Suche in Google Scholar

Pang, J., Xiong, H., Lin, P., Lai, L., Yang, H., Liu, Y., Huang, Q., Chen, S., Ye, Y., Sun, Y., et al.. (2017). Activation of miR-34a impairs autophagic flux and promotes cochlear cell death via repressing ATG9A: implications for age-related hearing loss. Cell Death Dis. 8: e3079, https://doi.org/10.1038/cddis.2017.462.Suche in Google Scholar

Parihar, M.S. and Hemnani, T. (2004). Alzheimer’s disease pathogenesis and therapeutic interventions. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas 11: 456–467, https://doi.org/10.1016/j.jocn.2003.12.007.Suche in Google Scholar

Patel, N., Hoang, D., Miller, N., Ansaloni, S., Huang, Q., Rogers, J.T., Lee, J.C., and Saunders, A.J. (2008). MicroRNAs can regulate human APP levels. Mol. Neurodegener. 3: 10, https://doi.org/10.1186/1750-1326-3-10.Suche in Google Scholar

Patten, A.R., Yau, S.Y., Fontaine, C.J., Meconi, A., Wortman, R.C., and Christie, B.R. (2015). The benefits of exercise on structural and functional plasticity in the rodent Hippocampus of different disease models. Brain Plast (Amsterdam, Netherlands) 1: 97–127, https://doi.org/10.3233/bpl-150016.Suche in Google Scholar

Pei, J., Kumarasamy, R.V., Jayaraman, S., Kanniappan, G.V., Long, Q., and Palanisamy, C.P. (2025). Quercetin-functionalized nanomaterials: innovative therapeutic avenues for Alzheimer’s disease management. Ageing Res. Rev. 104: 102665, https://doi.org/10.1016/j.arr.2025.102665.Suche in Google Scholar

Peitl, V., Štefanović, M., and Karlović, D. (2017). Depressive symptoms in schizophrenia and dopamine and serotonin gene polymorphisms. Prog. Neuropsychopharmacol. Biol. Psychiatry 77: 209–215, https://doi.org/10.1016/j.pnpbp.2017.04.011.Suche in Google Scholar

Pourahmad, R., Saleki, K., Zare, Gholinejad M., Aram, C., Soltani, Farsani A., Banazadeh, M., and Tafakhori, A. (2024). Exploring the effect of gut microbiome on Alzheimer’s disease. Biochem. Biophys. Rep. 39: 101776.Suche in Google Scholar

Prasad, K.N. (2016). Simultaneous activation of Nrf2 and elevation of antioxidant compounds for reducing oxidative stress and chronic inflammation in human Alzheimer’s disease. Mech. Ageing Dev. 153: 41–47, https://doi.org/10.1016/j.mad.2016.01.002.Suche in Google Scholar

Prendecki, M., Florczak-Wyspianska, J., Kowalska, M., Ilkowski, J., Grzelak, T., Bialas, K., Kozubski, W., and Dorszewska, J. (2019). APOE genetic variants and apoE, miR-107 and miR-650 levels in Alzheimer’s disease. Folia Neuropathol. 57: 106–116, https://doi.org/10.5114/fn.2019.84828.Suche in Google Scholar

Qin, Z., Han, X., Ran, J., Guo, S., and Lv, L. (2022). Exercise-mediated alteration of miR-192-5p is associated with cognitive improvement in Alzheimer’s disease. Neuroimmunomodulation 29: 36–43, https://doi.org/10.1159/000516928.Suche in Google Scholar

Raber, J., Wong, D., Yu, G.Q., Buttini, M., Mahley, R.W., Pitas, R.E., and Mucke, L. (2000). Apolipoprotein E and cognitive performance. Nature 404: 352–354, https://doi.org/10.1038/35006165.Suche in Google Scholar

Radak, Z., Ihasz, F., Koltai, E., Goto, S., Taylor, A.W., and Boldogh, I. (2014). The redox-associated adaptive response of brain to physical exercise. Free Radic Res. 48: 84–92, https://doi.org/10.3109/10715762.2013.826352.Suche in Google Scholar

Rees, P.S.C., Davidson, S.M., Harding, S.E., McGregor, C., Elliot, P.M., Yellon, D.M., Hausenloy, D.J. (2013). The mitochondrial permeability transition pore as a target for cardioprotection in hypertrophic cardiomyopathy. Cardiovasc. Drugs. Ther. 27: 235–237.Suche in Google Scholar

Ristori, E., Donnini, S., and Ziche, M. (2020). New insights into blood-brain barrier maintenance: the homeostatic role of β-amyloid precursor protein in cerebral vasculature. Front. Physiol. 11: 1056, https://doi.org/10.3389/fphys.2020.01056.Suche in Google Scholar

Rodríguez-Nogales, A., Algieri, F., Garrido-Mesa, J., Vezza, T., Utrilla, M.P., Chueca, N., Garcia, F., Olivares, M., Rodríguez-Cabezas, M.E., and Gálvez, J. (2017). Differential intestinal anti-inflammatory effects of Lactobacillus fermentum and Lactobacillus salivarius in DSS mouse colitis: impact on microRNAs expression and microbiota composition. Mol. Nutr. Food Res. 61, https://doi.org/10.1002/mnfr.201700144.Suche in Google Scholar

Rodriguez-Ortiz, C.J., Baglietto-Vargas, D., Martinez-Coria, H., LaFerla, F.M., and Kitazawa, M. (2014). Upregulation of miR-181 decreases c-Fos and SIRT-1 in the hippocampus of 3xTg-AD mice. J. Alzheimers Dis. 42: 1229–1238, https://doi.org/10.3233/jad-140204.Suche in Google Scholar

Rom, S., Rom, I., Passiatore, G., Pacifici, M., Radhakrishnan, S., Del Valle, L., Piña-Oviedo, S., Khalili, K., Eletto, D., and Peruzzi, F. (2010). CCL8/MCP-2 is a target for mir-146a in HIV-1-infected human microglial cells. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 24: 2292–2300, https://doi.org/10.1096/fj.09-143503.Suche in Google Scholar

Sáiz-Vazquez, O., Puente-Martínez, A., Pacheco-Bonrostro, J., and Ubillos-Landa, S. (2022). Blood pressure and Alzheimer’s disease: a review of meta-analysis. Front. Neurol. 13: 1065335.Suche in Google Scholar

Sakai, J., Cammarota, E., Wright, J.A., Cicuta, P., Gottschalk, R.A., Li, N., Fraser, I.D.C., and Bryant, C.E. (2017). Lipopolysaccharide-induced NF-κB nuclear translocation is primarily dependent on MyD88, but TNFα expression requires TRIF and MyD88. Sci. Rep. 7: 1428, https://doi.org/10.1038/s41598-017-01600-y.Suche in Google Scholar

Salminen, A., Kaarniranta, K., and Kauppinen, A. (2013). Crosstalk between oxidative stress and SIRT1: impact on the aging process. Int. J. Mol. Sci. 14: 3834–3859, https://doi.org/10.3390/ijms14023834.Suche in Google Scholar

Samadian, M., Gholipour, M., Hajiesmaeili, M., Taheri, M., and Ghafouri-Fard, S. (2021). The eminent role of microRNAs in the pathogenesis of Alzheimer’s disease. Front. Aging Neurosci. 13: 641080, https://doi.org/10.3389/fnagi.2021.641080.Suche in Google Scholar

Sampson, T.R. and Mazmanian, S.K. (2015). Control of brain development, function, and behavior by the microbiome. Cell. Host Microbe. 17: 565–576, https://doi.org/10.1016/j.chom.2015.04.011.Suche in Google Scholar

Saunders, T.S., Jenkins, N., Blennow, K., Ritchie, C., and Muniz-Terrera, G. (2022). Interactions between apolipoprotein E, sex, and amyloid-beta on cerebrospinal fluid p-tau levels in the European prevention of Alzheimer’s dementia longitudinal cohort study (EPAD LCS). EBioMedicine 83: 104241, https://doi.org/10.1016/j.ebiom.2022.104241.Suche in Google Scholar

Schäfer, D. (2005). No old man ever forgot where he buried his treasure: concepts of cognitive impairment in old age circa 1700. J. Am. Geriatr. Soc. 53: 2023–2027, https://doi.org/10.1111/j.1532-5415.2005.53558.x.Suche in Google Scholar

Schermer, M.H.N. (2023). Preclinical disease or risk factor? Alzheimer’s disease as a case study of changing conceptualizations of disease. J Med. Philos. 48: 322–334, https://doi.org/10.1093/jmp/jhad009.Suche in Google Scholar

Schlegel, P., Novotny, M., Klimova, B., and Valis, M. (2019). “Muscle-Gut-Brain Axis”: can physical activity help patients with Alzheimer’s disease due to microbiome modulation? J. Alzheimers Dis. 71: 861–878, https://doi.org/10.3233/jad-190460.Suche in Google Scholar

Schulte, L.N., Eulalio, A., Mollenkopf, H.-J., Reinhardt, R., and Vogel, J. (2011). Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J. 30: 1977–1989, https://doi.org/10.1038/emboj.2011.94.Suche in Google Scholar

Schwarz, D.S. and Zamore, P.D. (2002). Why do miRNAs live in the miRNP? Genes Dev. 16: 1025–1031, https://doi.org/10.1101/gad.992502.Suche in Google Scholar

Sedighi, M., Baluchnejadmojarad, T., Fallah, S., Moradi, N., Afshin-Majdd, S., and Roghani, M. (2019). Klotho ameliorates cellular inflammation via suppression of cytokine release and upregulation of miR-29a in the PBMCs of diagnosed Alzheimer’s disease patients. J. Mol. Neurosci. 69: 157–165, https://doi.org/10.1007/s12031-019-01345-5.Suche in Google Scholar

Sethi, P. and Lukiw, W.J. (2009). Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neurosci. Lett. 459: 100–104, https://doi.org/10.1016/j.neulet.2009.04.052.Suche in Google Scholar

Shen, Y., Xu, J., Li, Z., Huang, Y., Yuan, Y., Wang, J., Zhang, M., Hu, S., and Liang, Y. (2018). Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: a cross-sectional study. Schizophr. Res. 197: 470–477, https://doi.org/10.1016/j.schres.2018.01.002.Suche in Google Scholar

Shokhirev, M.N. and Johnson, A.A. (2022). An integrative machine-learning meta-analysis of high-throughput omics data identifies age-specific hallmarks of Alzheimer’s disease. Ageing Res. Rev. 81: 101721, https://doi.org/10.1016/j.arr.2022.101721.Suche in Google Scholar

Shvarts-Serebro, I., Sheinin, A., Gottfried, I., Adler, L., Schottlender, N., Ashery, U., and Barak, B. (2021). miR-128 as a regulator of synaptic properties in 5xFAD mice hippocampal neurons. J. Mol. Neurosci. 71: 2593–2607, https://doi.org/10.1007/s12031-021-01862-2.Suche in Google Scholar

Sible, I.J. and Nation, D.A. (2020). Long-term blood pressure variability across the clinical and biomarker spectrum of Alzheimer’s disease. J. Alzheimers Dis. 77: 1655–1669, https://doi.org/10.3233/jad-200221.Suche in Google Scholar

Silvestro, S., Bramanti, P., and Mazzon, E. (2019). Role of miRNAs in Alzheimer’s disease and possible fields of application. Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20163979.Suche in Google Scholar

Slota, J.A. and Booth, S.A. (2019). MicroRNAs in neuroinflammation: implications in disease pathogenesis, biomarker discovery and therapeutic applications. Non-coding RNA 5, https://doi.org/10.3390/ncrna5020035.Suche in Google Scholar

Smith, P.Y., Hernandez-Rapp, J., Jolivette, F., Lecours, C., Bisht, K., Goupil, C., Dorval, V., Parsi, S., Morin, F., Planel, E., et al.. (2015). miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Hum. Mol. Genet. 24: 6721–6735, https://doi.org/10.1093/hmg/ddv377.Suche in Google Scholar

Smith-Vikos, T. and Slack, F.J. (2012). MicroRNAs and their roles in aging. J. Cell. Sci. 125: 7–17, https://doi.org/10.1242/jcs.099200.Suche in Google Scholar

Song, Y., Hu, M., Zhang, J., Teng, Z.-Q., and Chen, C. (2019). A novel mechanism of synaptic and cognitive impairments mediated via microRNA-30b in Alzheimer’s disease. EBioMedicine 39: 409–421, https://doi.org/10.1016/j.ebiom.2018.11.059.Suche in Google Scholar

Srivastava, S., Tsongalis, G.J., and Kaur, P. (2016). Role of microRNAs in regulation of the TNF/TNFR gene superfamily in chronic lymphocytic leukemia. Clin. Biochem. 49: 1307–1310, https://doi.org/10.1016/j.clinbiochem.2016.08.010.Suche in Google Scholar

Strandwitz, P. (2018). Neurotransmitter modulation by the gut microbiota. Brain. Res. 1693: 128–133, https://doi.org/10.1016/j.brainres.2018.03.015.Suche in Google Scholar

Strandwitz, P., Kim, K.H., Terekhova, D., Liu, J.K., Sharma, A., Levering, J., McDonald, D., Dietrich, D., Ramadhar, T.R., Lekbua, A., et al.. (2019). GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4: 396–403, https://doi.org/10.1038/s41564-018-0307-3.Suche in Google Scholar

Sun, X., Wu, Y., Gu, M., and Zhang, Y. (2014). miR-342-5p decreases ankyrin G levels in Alzheimer’s disease transgenic mouse models. Cell Rep. 6: 264–270, https://doi.org/10.1016/j.celrep.2013.12.028.Suche in Google Scholar

Sun, Y., Ma, C., Sun, H., Wang, H., Peng, W., Zhou, Z., Wang, H., Pi, C., Shi, Y., and He, X. (2020). Metabolism: a novel shared link between diabetes mellitus and Alzheimer’s disease. J. Diabetes Res. 2020: 4981814, https://doi.org/10.1155/2020/4981814.Suche in Google Scholar

Tamagno, E., Guglielmotto, M., Vasciaveo, V., and Tabaton, M. (2021). Oxidative stress and beta amyloid in Alzheimer’s disease. Which comes first: the chicken or the egg? Antioxidants (Basel, Switzerland) 10, https://doi.org/10.3390/antiox10091479.Suche in Google Scholar

Tapia-Rojas, C., Aranguiz, F., Varela-Nallar, L., and Inestrosa, N.C. (2016). Voluntary running attenuates memory loss, decreases neuropathological changes and induces neurogenesis in a mouse model of Alzheimer’s disease. Brain Pathol. 26: 62–74, https://doi.org/10.1111/bpa.12255.Suche in Google Scholar

Tarassishin, L., Bauman, A., Suh, H.-S., and Lee, S.C. (2013). Anti-viral and anti-inflammatory mechanisms of the innate immune transcription factor interferon regulatory factor 3: relevance to human CNS diseases. J. Neuroimmune Pharmacol. Off. J. Soc. NeuroImmune. Pharmacol. 8: 132–144, https://doi.org/10.1007/s11481-012-9360-5.Suche in Google Scholar

Téglás, T., Ábrahám, D., Jókai, M., Kondo, S., Mohammadi, R., Fehér, J., Szabó, D., Wilhelm, M., and Radák, Z. (2020). Exercise combined with a probiotics treatment alters the microbiome, but moderately affects signalling pathways in the liver of male APP/PS1 transgenic mice. Biogerontology 21: 807–815, https://doi.org/10.1007/s10522-020-09895-7.Suche in Google Scholar

Tellechea, P., Pujol, N., Esteve-Belloch, P., Echeveste, B., García-Eulate, M.R., Arbizu, J., and Riverol, M. (2018). Early- and late-onset Alzheimer disease: are they the same entity? Neurologia 33: 244–253, https://doi.org/10.1016/j.nrleng.2015.08.009.Suche in Google Scholar

Teng, G., Wang, W., Dai, Y., Wang, S., Chu, Y., and Li, J. (2013). Let-7b is involved in the inflammation and immune responses associated with Helicobacter pylori infection by targeting Toll-like receptor 4. PLoS One 8: e56709, https://doi.org/10.1371/journal.pone.0056709.Suche in Google Scholar

Teter, B., Morihara, T., Lim, G.P., Chu, T., Jones, M.R., Zuo, X., Paul, R.M., Frautschy, S.A., and Cole, G.M. (2019). Curcumin restores innate immune Alzheimer’s disease risk gene expression to ameliorate Alzheimer pathogenesis. Neurobiol. Dis. 127: 432–448, https://doi.org/10.1016/j.nbd.2019.02.015.Suche in Google Scholar

Thai, T.-H., Calado, D.P., Casola, S., Ansel, K.M., Xiao, C., Xue, Y., Murphy, A., Frendewey, D., Valenzuela, D., Kutok, J.L., et al.. (2007). Regulation of the germinal center response by microRNA-155. Science 316: 604–608, https://doi.org/10.1126/science.1141229.Suche in Google Scholar

Ticinesi, A., Mancabelli, L., Carnevali, L., Nouvenne, A., Meschi, T., Del Rio, D., Ventura, M., Sgoifo, A., and Angelino, D. (2022). Interaction between diet and microbiota in the pathophysiology of Alzheimer’s disease: focus on polyphenols and dietary fibers. J. Alzheimers Dis. 86: 961–982, https://doi.org/10.3233/jad-215493.Suche in Google Scholar

Tiribuzi, R., Crispoltoni, L., Porcellati, S., Di Lullo, M., Florenzano, F., Pirro, M., Bagaglia, F., Kawarai, T., Zampolini, M., Orlacchio, A., et al.. (2014). miR128 up-regulation correlates with impaired amyloid β(1-42) degradation in monocytes from patients with sporadic Alzheimer’s disease. Neurobiol. Aging 35: 345–356, https://doi.org/10.1016/j.neurobiolaging.2013.08.003.Suche in Google Scholar

Toivonen, J.M., Sanz-Rubio, D., López-Pérez, Ó., Marín-Moreno, A., Bolea, R., Osta, R., Badiola, J.J., Zaragoza, P., Espinosa, J.C., Torres, J.M., et al.. (2020). MicroRNA alterations in a Tg501 mouse model of prion disease. Biomolecules 10, https://doi.org/10.3390/biom10060908.Suche in Google Scholar

Troutwine, B.R., Hamid, L., Lysaker, C.R., Strope, T.A., and Wilkins, H.M. (2022). Apolipoprotein E and Alzheimer’s disease. Acta Pharm. Sin. B 12: 496–510, https://doi.org/10.1016/j.apsb.2021.10.002.Suche in Google Scholar

Tsai, A.P., Dong, C., Lin, P.B.-C., Messenger, E.J., Casali, B.T., Moutinho, M., Liu, Y., Oblak, A.L., Lamb, B.T., Landreth, G.E., et al.. (2022). PLCG2 is associated with the inflammatory response and is induced by amyloid plaques in Alzheimer’s disease. Genome Med. 14: 17, https://doi.org/10.1186/s13073-022-01022-0.Suche in Google Scholar

van de Wouw, M., Boehme, M., Lyte, J.M., Wiley, N., Strain, C., O’Sullivan, O., Clarke, G., Stanton, C., Dinan, T.G., and Cryan, J.F. (2018). Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J. Physiol. 596: 4923–4944, https://doi.org/10.1113/jp276431.Suche in Google Scholar

van Praag, H., Christie, B.R., Sejnowski, T.J., and Gage, F.H. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. U S A 96: 13427–13431, https://doi.org/10.1073/pnas.96.23.13427.Suche in Google Scholar

van Praag, H., Fleshner, M., Schwartz, M.W., and Mattson, M.P. (2014). Exercise, energy intake, glucose homeostasis, and the brain. J. Neurosci. Off. J. Soc. Neurosci. 34: 15139–15149, https://doi.org/10.1523/jneurosci.2814-14.2014.Suche in Google Scholar

Varadarajan, S., Yatin, S., Aksenova, M., and Butterfield, D.A. (2000). Review: Alzheimer’s amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J. Struct. Biol. 130: 184–208, https://doi.org/10.1006/jsbi.2000.4274.Suche in Google Scholar

Varesi, A., Pierella, E., Romeo, M., Bavestrello, Piccini G., Alfano, C., Bjørklund, G., Oppong, A., Ricevuti, G., Esposito, C., Chirumbolo, S., et al.. (2022). The potential role of gut microbiota in Alzheimer’s disease: from diagnosis to treatment. Nutrients 14, https://doi.org/10.3390/nu14030668.Suche in Google Scholar

Vasefi, M., Ghaboolian-Zare, E., Abedelwahab, H., and Osu, A. (2020). Environmental toxins and Alzheimer’s disease progression. Neurochem. Int. 141: 104852, https://doi.org/10.1016/j.neuint.2020.104852.Suche in Google Scholar

Vilardo, E., Barbato, C., Ciotti, M., Cogoni, C., and Ruberti, F. (2010). MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J. Biol. Chem. 285: 18344–18351, https://doi.org/10.1074/jbc.m110.112664.Suche in Google Scholar

Vogt, N.M., Kerby, R.L., Dill-McFarland, K.A., Harding, S.J., Merluzzi, A.P., Johnson, S.C., Carlsson, C.M., Asthana, S., Zetterberg, H., Blennow, K., et al.. (2017). Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7: 13537, https://doi.org/10.1038/s41598-017-13601-y.Suche in Google Scholar

Wang, G., Huang, Y., Wang, L.-L., Zhang, Y.-F., Xu, J., Zhou, Y., Lourenco, G.F., Zhang, B., Wang, Y., Ren, R.-J., et al.. (2016). MicroRNA-146a suppresses ROCK1 allowing hyperphosphorylation of tau in Alzheimer’s disease. Sci. Rep. 6: 26697, https://doi.org/10.1038/srep26697.Suche in Google Scholar

Wang, J., Gu, B.J., Masters, C.L., and Wang, Y.-J. (2017). A systemic view of Alzheimer disease – insights from amyloid-β metabolism beyond the brain. Nat. Rev. Neurol. 13: 612–623, https://doi.org/10.1038/nrneurol.2017.111.Suche in Google Scholar

Wang, L., Liu, J., Wang, Q., Jiang, H., Zeng, L., Li, Z., and Liu, R. (2019). MicroRNA-200a-3p mediates neuroprotection in alzheimer-related deficits and attenuates amyloid-beta overproduction and tau hyperphosphorylation via coregulating BACE1 and PRKACB. Front. Pharmacol. 10: 806, https://doi.org/10.3389/fphar.2019.00806.Suche in Google Scholar

Wang, G., Zhou, H.-H., Luo, L., Qin, L.-Q., Yin, J., Yu, Z., Zhang, L., and Wan, Z. (2021). Voluntary wheel running is capable of improving cognitive function only in the young but not the middle-aged male APPSwe/PS1De9 mice. Neurochem. Int. 145: 105010, https://doi.org/10.1016/j.neuint.2021.105010.Suche in Google Scholar

Wang, L., Shui, X., Diao, Y., Chen, D., Zhou, Y., and Lee, T.H. (2023). Potential implications of miRNAs in the pathogenesis, diagnosis, and therapeutics of Alzheimer’s disease. Int. J. Mol. Sci. 24, https://doi.org/10.3390/ijms242216259.Suche in Google Scholar

Wang-Xia, Wang, Rajeev, B.W., Stromberg, A.J., Ren, N., Tang, G., Huang, Q., Rigoutsos, I., and Nelson, P.T. (2008). The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J. Neurosci. Off. J. Soc. Neurosci. 28: 1213–1223, https://doi.org/10.1523/jneurosci.5065-07.2008.Suche in Google Scholar

Williams, A.F. and Gagnon, J. (1982). Neuronal cell Thy-1 glycoprotein: homology with immunoglobulin. Science 216: 696–703, https://doi.org/10.1126/science.6177036.Suche in Google Scholar

Williams, T., Borchelt, D.R., and Chakrabarty, P. (2020). Therapeutic approaches targeting Apolipoprotein E function in Alzheimer’s disease. Mol. Neurodegener. 15: 8, https://doi.org/10.1186/s13024-020-0358-9.Suche in Google Scholar

Wu, X.-D., Zeng, K., Liu, W.-L., Gao, Y.-G., Gong, C.-S., Zhang, C.-X., and Chen, Y.-Q. (2014). Effect of aerobic exercise on miRNA-TLR4 signaling in atherosclerosis. Int. J. Sports Med. 35: 344–350, https://doi.org/10.1055/s-0033-1349075.Suche in Google Scholar

Wu, L., Zhang, Y., Zhao, H., Rong, G., Huang, P., Wang, F., and Xu, T. (2022). Dissecting the association of apolipoprotein E gene polymorphisms with type 2 diabetes mellitus and coronary artery disease. Front. Endocrinol. (Lausanne) 13: 838547, https://doi.org/10.3389/fendo.2022.838547.Suche in Google Scholar

Xie, C. and Feng, Y. (2022). Alcohol consumption and risk of Alzheimer’s disease: a dose-response meta-analysis. Geriatr. Gerontol. Int. 22: 278–285, https://doi.org/10.1111/ggi.14357.Suche in Google Scholar

Xu, H., Zhang, J., Shi, X., Li, X., and Zheng, C. (2021). NF-κB inducible miR-30b-5p aggravates joint pain and loss of articular cartilage via targeting SIRT1-FoxO3a-mediated NLRP3 inflammasome. Aging (Albany NY) 13: 20774–20792, https://doi.org/10.18632/aging.203466.Suche in Google Scholar

Yaksh, T.L. (2014). TRPV1 expression regulation… A further step in defining its biology: commentary for K. Zavala et al. “The anticancer antibiotic mithramycin-A inhibits TRPV1 expression in dorsal root ganglion neurons. Neurosci. Lett. 578: 209–210, https://doi.org/10.1016/j.neulet.2014.01.Suche in Google Scholar

Yan, Y., Li, B., Gao, Q., Wu, M., Ma, H., Bai, J., Ma, C., Xie, X., Gong, Y., Xu, L., et al.. (2025). Intestine-decipher engineered capsules protect against sepsis-induced intestinal injury via broad-spectrum anti-inflammation and parthanatos inhibition. Adv. Sci. Weinheim, Baden-Wurttemberg, Ger. 12: e2412799, https://doi.org/10.1002/advs.202412799.Suche in Google Scholar

Yang, W., Wu, P.-F., Ma, J.-X., Liao, M.-J., Xu, L.-S., Xu, M.-H., and Yi, L. (2020a). Presenilin1 exerts antiproliferative effects by repressing the Wnt/β-catenin pathway in glioblastoma. Cell Commun. Signal 18: 22, https://doi.org/10.1186/s12964-019-0501-9.Suche in Google Scholar

Yang, X., Yu, D., Xue, L., Li, H., and Du, J. (2020b). Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm. Sin B 10: 475–487, https://doi.org/10.1016/j.apsb.2019.07.001.Suche in Google Scholar

Yang, J., Malone, F., Go, M., Kou, J., Lim, J.-E., Caughey, R.C., and Fukuchi, K.-I. (2021). Lipopolysaccharide-induced exosomal miR-146a is involved in altered expression of Alzheimer’s risk genes via suppression of TLR4 signaling. J. Mol. Neurosci. 71: 1245–1255, https://doi.org/10.1007/s12031-020-01750-1.Suche in Google Scholar

Yin, M., Feng, C., Yu, Z., Zhang, Y., Li, Y., Wang, X., Song, C., Guo, M., and Li, C. (2025). sc2GWAS: a comprehensive platform linking single cell and GWAS traits of human. Nucleic Acids Res. 53: D1151–D1161, https://doi.org/10.1093/nar/gkae1008.Suche in Google Scholar

Yuede, C.M., Zimmerman, S.D., Dong, H., Kling, M.J., Bero, A.W., Holtzman, D.M., Timson, B.F., and Csernansky, J.G. (2009). Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol. Dis. 35: 426–432, https://doi.org/10.1016/j.nbd.2009.06.002.Suche in Google Scholar

Zhan, X., Stamova, B., and Sharp, F.R. (2018). Lipopolysaccharide associates with amyloid plaques, neurons and oligodendrocytes in Alzheimer’s disease brain: a review. Front. Aging Neurosci. 10: 42, https://doi.org/10.3389/fnagi.2018.00042.Suche in Google Scholar

Zhang, R., Zhang, Q., Niu, J., Lu, K., Xie, B., Cui, D., and Xu, S. (2014). Screening of microRNAs associated with Alzheimer’s disease using oxidative stress cell model and different strains of senescence accelerated mice. J. Neurol. Sci. 338: 57–64, https://doi.org/10.1016/j.jns.2013.12.017.Suche in Google Scholar

Zhang, X.-X., Tian, Y., Wang, Z.-T., Ma, Y.-H., Tan, L., and Yu, J.-T. (2021). The epidemiology of Alzheimer’s disease modifiable risk factors and prevention. J. Prev. Alzheimer’s Dis. 8: 313–321, https://doi.org/10.14283/jpad.2021.15.Suche in Google Scholar

Zhang, W., Shen, X.-Y., Zhang, W.-W., Chen, H., Xu, W.-P., and Wei, W. (2022) Corrigendum to “Di-(2-ethylhexyl) phthalate could disrupt the insulin signaling pathway in liver of SD rats and L02 cells via PPARγ”. Toxicol. Appl. Pharmacol. 316: 17–26. https://doi.org/10.1016/j.taap.2016.12.010.Suche in Google Scholar

Zhang, Y., Wang, G., Li, R., Liu, R., Yu, Z., Zhang, Z., and Wan, Z. (2023). Trimethylamine N-oxide aggravated cognitive impairment from APP/PS1 mice and protective roles of voluntary exercise. Neurochem. Int. 162: 105459, https://doi.org/10.1016/j.neuint.2022.105459.Suche in Google Scholar

Zhang, Q.-Y., Wang, Q., Fu, J.-X., Xu, X.-X., Guo, D.-S., Pan, Y.-C., Zhang, T., and Wang, H. (2024). Multi targeted therapy for Alzheimer’s disease by guanidinium-modified calixarene and cyclodextrin Co-assembly loaded with insulin. ACS Nano 18: 33032–33041, https://doi.org/10.1021/acsnano.4c05693.Suche in Google Scholar

Zhao, Y., Jaber, V., and Lukiw, W.J. (2017a). Secretory products of the human GI tract microbiome and their potential impact on Alzheimer’s disease (AD): detection of lipopolysaccharide (LPS) in AD Hippocampus. Front. Cell Infect. Microbiol. 7: 318, https://doi.org/10.3389/fcimb.2017.00318.Suche in Google Scholar

Zhao, Y., Yang, F., Li, W., Xu, C., Li, L., Chen, L., Liu, Y., and Sun, P. (2017b). miR-29a suppresses MCF-7 cell growth by downregulating tumor necrosis factor receptor 1. Tumour. Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 39: 1010428317692264, https://doi.org/10.1177/1010428317692264.Suche in Google Scholar

Zhao, Y., Jaber, V.R., LeBeauf, A., Sharfman, N.M., and Lukiw, W.J. (2019). microRNA-34a (miRNA-34a) mediated down-regulation of the post-synaptic cytoskeletal element SHANK3 in sporadic Alzheimer’s disease (AD). Front. Neurol. 10: 28, https://doi.org/10.3389/fneur.2019.00028.Suche in Google Scholar

Zhou, R., Hu, G., Liu, J., Gong, A.-Y., Drescher, K.M., and Chen, X.-M. (2009). NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses. PLoS Pathog. 5: e1000681, https://doi.org/10.1371/journal.ppat.1000681.Suche in Google Scholar

Zhou, Y., Li, L., Yu, Z., Gu, X., Pan, R., Li, Q., Yuan, C., Cai, F., Zhu, Y., and Cui, Y. (2022a). Dermatophagoides pteronyssinus allergen Der p 22: cloning, expression, IgE-binding in asthmatic children, and immunogenicity. Pediatr. Allergy Immunol. 33: e13835, https://doi.org/10.1111/pai.13835.Suche in Google Scholar

Zhou, Y., Li, Q., Pan, R., Wang, Q., Zhu, X., Yuan, C., Cai, F., Gao, Y.-D., and Cui, Y. (2022b). Regulatory roles of three miRNAs on allergen mRNA expression in Tyrophagus putrescentiae. Allergy 77: 469–482, https://doi.org/10.1111/all.15111.Suche in Google Scholar

Zhou, Y., Zhang, Y., Jin, S., Lv, J., Li, M., and Feng, N. (2024). The gut microbiota derived metabolite trimethylamine N-oxide: its important role in cancer and other diseases. Biomed. Pharmacother. 177: 117031, https://doi.org/10.1016/j.biopha.2024.117031.Suche in Google Scholar

Zhu, H.-C., Wang, L.-M., Wang, M., Song, B., Tan, S., Teng, J.-F., and Duan, D.-X. (2012). MicroRNA-195 downregulates Alzheimer’s disease amyloid-β production by targeting BACE1. Brain Res. Bull 88: 596–601, https://doi.org/10.1016/j.brainresbull.2012.05.018.Suche in Google Scholar

Zhu, P., Yang, M., He, H., Kuang, Z., Liang, M., Lin, A., Liang, S., Wen, Q., Cheng, Z., and Sun, C. (2019). Curcumin attenuates hypoxia/reoxygenation-induced cardiomyocyte injury by downregulating Notch signaling. Mol. Med. Rep. 20: 1541–1550, https://doi.org/10.3892/mmr.2019.10371.Suche in Google Scholar

Zhu, Z., Gu, Y., Zeng, C., Yang, M., Yu, H., Chen, H., Zhang, B., and Cai, H. (2022). Olanzapine-induced lipid disturbances: a potential mechanism through the gut microbiota-brain axis. Front. Pharmacol. 13: 897926, https://doi.org/10.3389/fphar.2022.897926.Suche in Google Scholar

Zhuang, Z.-Q., Shen, L.-L., Li, W.-W., Fu, X., Zeng, F., Gui, L., Lü, Y., Cai, M., Zhu, C., Tan, Y.-L., et al.. (2018). Gut microbiota is altered in patients with Alzheimer’s disease. J. Alzheimers Dis. 63: 1337–1346, https://doi.org/10.3233/jad-180176.Suche in Google Scholar

Zhuang, J., Chen, Z., Cai, P., Wang, R., Yang, Q., Li, L., Yang, H., and Zhu, R. (2020a). Targeting MicroRNA-125b promotes neurite outgrowth but represses cell apoptosis and inflammation via blocking PTGS2 and CDK5 in a FOXQ1-dependent way in Alzheimer disease. Front. Cell Neurosci. 14: 587747, https://doi.org/10.3389/fncel.2020.587747.Suche in Google Scholar

Zhuang, Z., Yang, R., Wang, W., Qi, L., and Huang, T. (2020b). Associations between gut microbiota and Alzheimer’s disease, major depressive disorder, and schizophrenia. J. Neuroinflammation 17: 288, https://doi.org/10.1186/s12974-020-01961-8.Suche in Google Scholar

Zingale, V.D., Gugliandolo, A., and Mazzon, E. (2021). MiR-155: an important regulator of neuroinflammation. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms23010090.Suche in Google Scholar

Received: 2025-01-24
Accepted: 2025-03-28
Published Online: 2025-05-07
Published in Print: 2025-10-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2025-0013/html
Button zum nach oben scrollen