Startseite Studying the Alzheimer’s disease continuum using EEG and fMRI in single-modality and multi-modality settings
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Studying the Alzheimer’s disease continuum using EEG and fMRI in single-modality and multi-modality settings

  • Jing Li , Xin Li , Futao Chen , Weiping Li , Jiu Chen und Bing Zhang EMAIL logo
Veröffentlicht/Copyright: 1. Januar 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Alzheimer’s disease (AD) is a biological, clinical continuum that covers the preclinical, prodromal, and clinical phases of the disease. Early diagnosis and identification of the stages of Alzheimer’s disease (AD) are crucial in clinical practice. Ideally, biomarkers should reflect the underlying process (pathological or otherwise), be reproducible and non-invasive, and allow repeated measurements over time. However, the currently known biomarkers for AD are not suitable for differentiating the stages and predicting the trajectory of disease progression. Some objective parameters extracted using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are widely applied to diagnose the stages of the AD continuum. While electroencephalography (EEG) has a high temporal resolution, fMRI has a high spatial resolution. Combined EEG and fMRI (EEG–fMRI) can overcome single-modality drawbacks and obtain multi-dimensional information simultaneously, and it can help explore the hemodynamic changes associated with the neural oscillations that occur during information processing. This technique has been used in the cognitive field in recent years. This review focuses on the different techniques available for studying the AD continuum, including EEG and fMRI in single-modality and multi-modality settings, and the possible future directions of AD diagnosis using EEG–fMRI.


Corresponding author: Bing Zhang, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China; Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China; Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, Jiangsu, 210008, China; and Institute of Brain Science, Nanjing University, Nanjing, Jiangsu, 210008, China, E-mail:

Acknowledgments

This work was supported by the Natural Science Foundation of Jiangsu Province (BK20230144); the National Science and Technology Innovation 2030 – Major program of “Brain Science and Brain-Like Research” (2022ZD0211800); the National Natural Science Foundation of China (82271965, 81971596, 82001793); the Fundamental Research Funds for the Central Universities, Nanjing University (2020-021414380462); the Key Scientific Research Project of Jiangsu Health Committee (K2019025); Industry and Information Technology Department of Nanjing (SE179-2021); Educational Research Project of Nanjing Medical University (2019ZC036); the Project of Nanjing Health Science and Technology Development (YKK19055); Key Project supported by Medical Science and technology development Foundation, Nanjing Department of Health (ZKX21031), and fundings for Clinical Trials from the Affiliated Drum Tower Hospital, Medical School of Nanjing University (2021-LCYJ-PY-36). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors states no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

Aggleton, J.P., Pralus, A., Nelson, A.J., and Hornberger, M. (2016). Thalamic pathology and memory loss in early Alzheimer’s disease: moving the focus from the medial temporal lobe to Papez circuit. Brain 139: 1877–1890, https://doi.org/10.1093/brain/aww083.Suche in Google Scholar PubMed PubMed Central

Aisen, P.S., Cummings, J., Jack, C.R.Jr., Morris, J.C., Sperling, R., Frölich, L., Jones, R.W., Dowsett, S.A., Matthews, B.R., Raskin, J., et al.. (2017). On the path to 2025: understanding the Alzheimer’s disease continuum. Alzheimers Res. Ther. 9: 60, https://doi.org/10.1186/s13195-017-0283-5.Suche in Google Scholar PubMed PubMed Central

Babiloni, C., Carducci, F., Lizio, R., Vecchio, F., Baglieri, A., Bernardini, S., Cavedo, E., Bozzao, A., Buttinelli, C., Esposito, F., et al.. (2013a). Resting state cortical electroencephalographic rhythms are related to gray matter volume in subjects with mild cognitive impairment and Alzheimer’s disease. Hum. Brain Mapp. 34: 1427–1446, https://doi.org/10.1002/hbm.22005.Suche in Google Scholar PubMed PubMed Central

Babiloni, C., Del Percio, C., Boccardi, M., Lizio, R., Lopez, S., Carducci, F., Marzano, N., Soricelli, A., Ferri, R., Triggiani, A.I., et al.. (2015). Occipital sources of resting-state alpha rhythms are related to local gray matter density in subjects with amnesic mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 36: 556–570, https://doi.org/10.1016/j.neurobiolaging.2014.09.011.Suche in Google Scholar PubMed PubMed Central

Babiloni, C., Del Percio, C., Bordet, R., Bourriez, J.L., Bentivoglio, M., Payoux, P., Derambure, P., Dix, S., Infarinato, F., Lizio, R., et al.. (2013b). Effects of acetylcholinesterase inhibitors and memantine on resting-state electroencephalographic rhythms in Alzheimer’s disease patients. Clin. Neurophysiol. 124: 837–850, https://doi.org/10.1016/j.clinph.2012.09.017.Suche in Google Scholar PubMed

Babiloni, C., Ferri, R., Noce, G., Lizio, R., Lopez, S., Lorenzo, I., Tucci, F., Soricelli, A., Nobili, F., Arnaldi, D., et al.. (2021). Resting state alpha electroencephalographic rhythms are differently related to aging in cognitively unimpaired seniors and patients with Alzheimer’s disease and amnesic mild cognitive impairment. J. Alzheimers Dis. 82: 1085–1114, https://doi.org/10.3233/jad-201271.Suche in Google Scholar PubMed

Babiloni, C., Frisoni, G.B., Pievani, M., Vecchio, F., Lizio, R., Buttiglione, M., Geroldi, C., Fracassi, C., Eusebi, F., Ferri, R., et al.. (2009). Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease. Neuroimage 44: 123–135, https://doi.org/10.1016/j.neuroimage.2008.08.005.Suche in Google Scholar PubMed

Badhwar, A., Tam, A., Dansereau, C., Orban, P., Hoffstaedter, F., and Bellec, P. (2017). Resting-state network dysfunction in Alzheimer’s disease: a systematic review and meta-analysis. Alzheimers Dement 8: 73–85, https://doi.org/10.1016/j.dadm.2017.03.007.Suche in Google Scholar PubMed PubMed Central

Breton, A., Casey, D., and Arnaoutoglou, N.A. (2019). Cognitive tests for the detection of mild cognitive impairment (MCI), the prodromal stage of dementia: meta-analysis of diagnostic accuracy studies. Int. J. Geriatr. Psychiatry 34: 233–242, https://doi.org/10.1002/gps.5016.Suche in Google Scholar PubMed

Brueggen, K., Fiala, C., Berger, C., Ochmann, S., Babiloni, C., and Teipel, S.J. (2017). Early changes in alpha band power and DMN BOLD activity in Alzheimer’s disease: a simultaneous resting state EEG-fMRI study. Front. Aging Neurosci. 9: 319, https://doi.org/10.3389/fnagi.2017.00319.Suche in Google Scholar PubMed PubMed Central

Cakir, Y. (2020). Hybrid modeling of alpha rhythm and the amplitude of low-frequency fluctuations abnormalities in the thalamocortical region and basal ganglia in Alzheimer’s disease. Eur. J. Neurosci. 52: 2944–2961, https://doi.org/10.1111/ejn.14666.Suche in Google Scholar PubMed

Cecchetti, G., Agosta, F., Basaia, S., Cividini, C., Cursi, M., Santangelo, R., Caso, F., Minicucci, F., Magnani, G., and Filippi, M. (2021). Resting-state electroencephalographic biomarkers of Alzheimer’s disease. Neuroimage Clin. 31: 102711, https://doi.org/10.1016/j.nicl.2021.102711.Suche in Google Scholar PubMed PubMed Central

Celesia, G.G. (1986). EEG and event-related potentials in aging and dementia. J. Clin. Neurophysiol. 3: 99–111, https://doi.org/10.1097/00004691-198604000-00001.Suche in Google Scholar PubMed

Chang, Y.S., Chen, H.L., Hsu, C.Y., Tang, S.H., and Liu, C.K. (2014). Parallel improvement of cognitive functions and P300 latency following donepezil treatment in patients with Alzheimer’s disease: a case-control study. J. Clin. Neurophysiol. 31: 81–85, https://doi.org/10.1097/01.wnp.0000436899.48243.5e.Suche in Google Scholar PubMed

Chen, B., Wang, Q., Zhong, X., Mai, N., Zhang, M., Zhou, H., Haehner, A., Chen, X., Wu, Z., Auber, L.A., et al.. (2022). Structural and functional abnormalities of olfactory-related regions in subjective cognitive decline, mild cognitive impairment, and Alzheimer’s disease. Int. J. Neuropsychopharmacol. 25: 361–374, https://doi.org/10.1093/ijnp/pyab091.Suche in Google Scholar PubMed PubMed Central

Chen, J., Yan, Y., Gu, L., Gao, L., and Zhang, Z. (2020). Electrophysiological processes on motor imagery mediate the association between increased gray matter volume and cognition in amnestic mild cognitive impairment. Brain Topogr. 33: 255–266, https://doi.org/10.1007/s10548-019-00742-8.Suche in Google Scholar PubMed

Chimthanawala, N.M.A., Haria, A., and Sathaye, S. (2023). Non-invasive biomarkers for early detection of Alzheimer’s disease: a new-age perspective. Mol. Neurobiol., https://doi.org/10.1007/s12035-023-03578-3.Suche in Google Scholar PubMed

Chou, Y.H., Ton That, V., and Sundman, M. (2020). A systematic review and meta-analysis of rTMS effects on cognitive enhancement in mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 86: 1–10, https://doi.org/10.1016/j.neurobiolaging.2019.08.020.Suche in Google Scholar PubMed PubMed Central

Chu, C.S., Li, C.T., Brunoni, A.R., Yang, F.C., Tseng, P.T., Tu, Y.K., Stubbs, B., Carvalho, A.F., Thompson, T., Rajji, T.K., et al.. (2021). Cognitive effects and acceptability of non-invasive brain stimulation on Alzheimer’s disease and mild cognitive impairment: a component network meta-analysis. J. Neurol. Neurosurg. Psychiatry 92: 195–203, https://doi.org/10.1136/jnnp-2020-323870.Suche in Google Scholar PubMed PubMed Central

Coben, L.A., Danziger, W., and Storandt, M. (1985). A longitudinal EEG study of mild senile dementia of Alzheimer type: changes at 1 year and at 2.5 years. Electroencephalogr. Clin. Neurophysiol. 61: 101–112, https://doi.org/10.1016/0013-4694(85)91048-x.Suche in Google Scholar PubMed

Colloby, S.J., Cromarty, R.A., Peraza, L.R., Johnsen, K., Jóhannesson, G., Bonanni, L., Onofrj, M., Barber, R., O’Brien, J.T., and Taylor, J.P. (2016). Multimodal EEG-MRI in the differential diagnosis of Alzheimer’s disease and dementia with Lewy bodies. J. Psychiatr. Res. 78: 48–55, https://doi.org/10.1016/j.jpsychires.2016.03.010.Suche in Google Scholar PubMed PubMed Central

Dauwels, J., Vialatte, F., and Cichocki, A. (2010). Diagnosis of Alzheimer’s disease from EEG signals: where are we standing? Curr. Alzheimer Res. 7: 487–505, https://doi.org/10.2174/156720510792231720.Suche in Google Scholar PubMed

Debener, S., Ullsperger, M., Siegel, M., and Engel, A.K. (2006). Single-trial EEG-fMRI reveals the dynamics of cognitive function. Trends Cognit. Sci. 10: 558–563, https://doi.org/10.1016/j.tics.2006.09.010.Suche in Google Scholar PubMed

Dierks, T., Jelic, V., Julin, P., Maurer, K., Wahlund, L.O., Almkvist, O., Strik, W.K., and Winblad, B. (1997). EEG-microstates in mild memory impairment and Alzheimer’s disease: possible association with disturbed information processing. J. Neural Transm. 104: 483–495, https://doi.org/10.1007/bf01277666.Suche in Google Scholar

Djordjevic, J., Jones-Gotman, M., De Sousa, K., and Chertkow, H. (2008). Olfaction in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 29: 693–706, https://doi.org/10.1016/j.neurobiolaging.2006.11.014.Suche in Google Scholar PubMed

Dubois, B., Hampel, H., Feldman, H.H., Scheltens, P., Aisen, P., Andrieu, S., Bakardjian, H., Benali, H., Bertram, L., Blennow, K., et al.. (2016). Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement 12: 292–323, https://doi.org/10.1016/j.jalz.2016.02.002.Suche in Google Scholar PubMed PubMed Central

Dubois, B., Villain, N., Frisoni, G.B., Rabinovici, G.D., Sabbagh, M., Cappa, S., Bejanin, A., Bombois, S., Epelbaum, S., Teichmann, M., et al.. (2021). Clinical diagnosis of Alzheimer’s disease: recommendations of the international working group. Lancet Neurol. 20: 484–496, https://doi.org/10.1016/s1474-4422(21)00066-1.Suche in Google Scholar

Dustman, R.E., Shearer, D.E., and Emmerson, R.Y. (1993). EEG and event-related potentials in normal aging. Prog. Neurobiol. 41: 369–401, https://doi.org/10.1016/0301-0082(93)90005-d.Suche in Google Scholar PubMed

Esposito, R., Bortoletto, M., and Miniussi, C. (2020). Integrating TMS, EEG, and MRI as an approach for studying brain connectivity. Neuroscientist 26: 471–486, https://doi.org/10.1177/1073858420916452.Suche in Google Scholar PubMed

Fabrizi, L., Sparkes, M., Horesh, L., Perez-Juste Abascal, J.F., McEwan, A., Bayford, R.H., Elwes, R., Binnie, C.D., and Holder, D.S. (2006). Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans. Physiol. Meas. 27: S163–S174, https://doi.org/10.1088/0967-3334/27/5/s14.Suche in Google Scholar PubMed

Ferri, R., Babiloni, C., Karami, V., Triggiani, A.I., Carducci, F., Noce, G., Lizio, R., Pascarelli, M.T., Soricelli, A., Amenta, F., et al.. (2021). Stacked autoencoders as new models for an accurate Alzheimer’s disease classification support using resting-state EEG and MRI measurements. Clin. Neurophysiol. 132: 232–245, https://doi.org/10.1016/j.clinph.2020.09.015.Suche in Google Scholar PubMed

Fjell, A.M. and Walhovd, K.B. (2001). P300 and neuropsychological tests as measures of aging: scalp topography and cognitive changes. Brain Topogr. 14: 25–40, https://doi.org/10.1023/a:1012563605837.10.1023/A:1012563605837Suche in Google Scholar

Golkowski, D., Merz, K., Mlynarcik, C., Kiel, T., Schorr, B., Lopez-Rolon, A., Lukas, M., Jordan, D., Bender, A., and Ilg, R. (2017). Simultaneous EEG-PET-fMRI measurements in disorders of consciousness: an exploratory study on diagnosis and prognosis. J. Neurol. 264: 1986–1995, https://doi.org/10.1007/s00415-017-8591-z.Suche in Google Scholar PubMed

Grieder, M., Koenig, T., Kinoshita, T., Utsunomiya, K., Wahlund, L.O., Dierks, T., and Nishida, K. (2016). Discovering EEG resting state alterations of semantic dementia. Clin. Neurophysiol. 127: 2175–2181, https://doi.org/10.1016/j.clinph.2016.01.025.Suche in Google Scholar PubMed

Grunwald, M., Busse, F., Hensel, A., Kruggel, F., Riedel-Heller, S., Wolf, H., Arendt, T., and Gertz, H.J. (2001). Correlation between cortical theta activity and hippocampal volumes in health, mild cognitive impairment, and mild dementia. J. Clin. Neurophysiol. 18: 178–184, https://doi.org/10.1097/00004691-200103000-00010.Suche in Google Scholar PubMed

Grunwald, M., Hensel, A., Wolf, H., Weiss, T., and Gertz, H.J. (2007). Does the hippocampal atrophy correlate with the cortical theta power in elderly subjects with a range of cognitive impairment? J. Clin. Neurophysiol. 24: 22–26, https://doi.org/10.1097/wnp.0b013e31802ed5b2.Suche in Google Scholar

Gu, L. and Zhang, Z. (2019). Exploring structural and functional brain changes in mild cognitive impairment: a whole brain ALE meta-analysis for multimodal MRI. ACS Chem. Neurosci. 10: 2823–2829, https://doi.org/10.1021/acschemneuro.9b00045.Suche in Google Scholar PubMed

Gauthier, S., Rosa-Neto, P., Morais, J.A., and Webster, C. (2021). World Alzheimer Report 2021: journey through the diagnosis of dementia. Alzheimer’s Disease International, London, England.Suche in Google Scholar

Hampel, H., Teipel, S.J., Alexander, G.E., Pogarell, O., Rapoport, S.I., and Möller, H.J. (2002). In vivo imaging of region and cell type specific neocortical neurodegeneration in Alzheimer’s disease. Perspectives of MRI derived corpus callosum measurement for mapping disease progression and effects of therapy. Evidence from studies with MRI, EEG and PET. J. Neural. Transm. 109: 837–855, https://doi.org/10.1007/s007020200069.Suche in Google Scholar PubMed

Hirata, K., Hozumi, A., Tanaka, H., Kubo, J., Zeng, X.H., Yamazaki, K., Asahi, K., and Nakano, T. (2000). Abnormal information processing in dementia of Alzheimer type. A study using the event-related potential’s field. Eur. Arch. Psychiatry Clin. Neurosci. 250: 152–155, https://doi.org/10.1007/s004060070033.Suche in Google Scholar PubMed

Horvath, A., Szucs, A., Csukly, G., Sakovics, A., Stefanics, G., and Kamondi, A. (2018). EEG and ERP biomarkers of Alzheimer’s disease: a critical review. Front. Biosci. 23: 183–220, https://doi.org/10.2741/4587.Suche in Google Scholar PubMed

Howe, A.S., Bani-Fatemi, A., and De Luca, V. (2014). The clinical utility of the auditory P300 latency subcomponent event-related potential in preclinical diagnosis of patients with mild cognitive impairment and Alzheimer’s disease. Brain Cogn. 86: 64–74, https://doi.org/10.1016/j.bandc.2014.01.015.Suche in Google Scholar PubMed

Invitto, S., Piraino, G., Ciccarese, V., Carmillo, L., Caggiula, M., Trianni, G., Nicolardi, G., Di Nuovo, S., and Balconi, M. (2018). Potential role of OERP as early marker of mild cognitive impairment. Front. Aging Neurosci. 10: 272, https://doi.org/10.3389/fnagi.2018.00272.Suche in Google Scholar PubMed PubMed Central

Ishii, R., Canuet, L., Aoki, Y., Hata, M., Iwase, M., Ikeda, S., Nishida, K., and Ikeda, M. (2017). Healthy and pathological brain aging: from the perspective of oscillations, functional connectivity, and signal complexity. Neuropsychobiology 75: 151–161, https://doi.org/10.1159/000486870.Suche in Google Scholar PubMed

Jack, C.R.Jr., Bennett, D.A., Blennow, K., Carrillo, M.C., Dunn, B., Haeberlein, S.B., Holtzman, D.M., Jagust, W., Jessen, F., Karlawish, J., et al.. (2018). NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14: 535–562, https://doi.org/10.1016/j.jalz.2018.02.018.Suche in Google Scholar PubMed PubMed Central

Jack, C.R.Jr., Knopman, D.S., Jagust, W.J., Petersen, R.C., Weiner, M.W., Aisen, P.S., Shaw, L.M., Vemuri, P., Wiste, H.J., Weigand, S.D., et al.. (2013). Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12: 207–216, https://doi.org/10.1016/s1474-4422(12)70291-0.Suche in Google Scholar PubMed PubMed Central

Jackson, C.E. and Snyder, P.J. (2008). Electroencephalography and event-related potentials as biomarkers of mild cognitive impairment and mild Alzheimer’s disease. Alzheimers Dement 4: S137–S143, https://doi.org/10.1016/j.jalz.2007.10.008.Suche in Google Scholar PubMed

Jafarian, A., Litvak, V., Cagnan, H., Friston, K.J., and Zeidman, P. (2020). Comparing dynamic causal models of neurovascular coupling with fMRI and EEG/MEG. Neuroimage 216: 116734, https://doi.org/10.1016/j.neuroimage.2020.116734.Suche in Google Scholar PubMed PubMed Central

Jessen, F., Amariglio, R.E., Buckley, R.F., van der Flier, W.M., Han, Y., Molinuevo, J.L., Rabin, L., Rentz, D.M., Rodriguez-Gomez, O., Saykin, A.J., et al.. (2020). The characterisation of subjective cognitive decline. Lancet Neurol. 19: 271–278, https://doi.org/10.1016/s1474-4422(19)30368-0.Suche in Google Scholar

Jessen, F., Amariglio, R.E., van Boxtel, M., Breteler, M., Ceccaldi, M., Chételat, G., Dubois, B., Dufouil, C., Ellis, K.A., van der Flier, W.M., et al.. (2014). A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement 10: 844–852, https://doi.org/10.1016/j.jalz.2014.01.001.Suche in Google Scholar PubMed PubMed Central

Jessen, F., Wiese, B., Bachmann, C., Eifflaender-Gorfer, S., Haller, F., Kölsch, H., Luck, T., Mösch, E., van den Bussche, H., Wagner, M., et al.. (2010). Prediction of dementia by subjective memory impairment: effects of severity and temporal association with cognitive impairment. Arch. Gen. Psychiatry 67: 414–422, https://doi.org/10.1001/archgenpsychiatry.2010.30.Suche in Google Scholar PubMed

Jesus, B.Jr., Cassani, R., McGeown, W.J., Cecchi, M., Fadem, K.C., and Falk, T.H. (2021). Multimodal prediction of Alzheimer’s disease severity level based on resting-state EEG and structural MRI. Front. Hum. Neurosci. 15: 700627, https://doi.org/10.3389/fnhum.2021.700627.Suche in Google Scholar PubMed PubMed Central

Juckel, G., Clotz, F., Frodl, T., Kawohl, W., Hampel, H., Pogarell, O., and Hegerl, U. (2008). Diagnostic usefulness of cognitive auditory event-related p300 subcomponents in patients with Alzheimers disease? J. Clin. Neurophysiol. 25: 147–152, https://doi.org/10.1097/wnp.0b013e3181727c95.Suche in Google Scholar PubMed

Jung, H.J., Shin, I.S., and Lee, J.E. (2019). Olfactory function in mild cognitive impairment and Alzheimer’s disease: a meta-analysis. Laryngoscope 129: 362–369, https://doi.org/10.1002/lary.27399.Suche in Google Scholar PubMed

Koenig, T., Prichep, L., Dierks, T., Hubl, D., Wahlund, L.O., John, E.R., and Jelic, V. (2005). Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 26: 165–171, https://doi.org/10.1016/j.neurobiolaging.2004.03.008.Suche in Google Scholar PubMed

Koenig, T., Prichep, L., Lehmann, D., Sosa, P.V., Braeker, E., Kleinlogel, H., Isenhart, R., and John, E.R. (2002). Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. Neuroimage 16: 41–48, https://doi.org/10.1006/nimg.2002.1070.Suche in Google Scholar PubMed

Kowalewski, J. and Murphy, C. (2012). Olfactory ERPs in an odor/visual congruency task differentiate ApoE ε4 carriers from non-carriers. Brain Res. 1442: 55–65, https://doi.org/10.1016/j.brainres.2011.12.030.Suche in Google Scholar PubMed PubMed Central

Kugel, H., Bremer, C., Püschel, M., Fischbach, R., Lenzen, H., Tombach, B., Van Aken, H., and Heindel, W. (2003). Hazardous situation in the MR bore: induction in ECG leads causes fire. Eur. Radiol. 13: 690–694, https://doi.org/10.1007/s00330-003-1841-8.Suche in Google Scholar PubMed

Lau, W.K., Leung, M.K., Lee, T.M., and Law, A.C. (2016). Resting-state abnormalities in amnestic mild cognitive impairment: a meta-analysis. Transl. Psychiatry 6: e790, https://doi.org/10.1038/tp.2016.55.Suche in Google Scholar PubMed PubMed Central

Lehmann, D., Ozaki, H., and Pal, I. (1987). EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr. Clin. Neurophysiol. 67: 271–288, https://doi.org/10.1016/0013-4694(87)90025-3.Suche in Google Scholar PubMed

Lehmann, D. and Skrandies, W. (1980). Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr. Clin. Neurophysiol. 48: 609–621, https://doi.org/10.1016/0013-4694(80)90419-8.Suche in Google Scholar PubMed

Lejko, N., Larabi, D.I., Herrmann, C.S., Aleman, A., and Ćurčić-Blake, B. (2020). Alpha power and functional connectivity in cognitive decline: a systematic review and meta-analysis. J. Alzheimers Dis. 78: 1047–1088, https://doi.org/10.3233/jad-200962.Suche in Google Scholar

Li, H.J., Hou, X.H., Liu, H.H., Yue, C.L., He, Y., and Zuo, X.N. (2015). Toward systems neuroscience in mild cognitive impairment and Alzheimer’s disease: a meta-analysis of 75 fMRI studies. Hum. Brain Mapp. 36: 1217–1232, https://doi.org/10.1002/hbm.22689.Suche in Google Scholar PubMed PubMed Central

Li, Y., Zou, G., Shao, Y., Yao, P., Liu, J., Zhou, S., Hu, S., Xu, J., Guo, Y., Gao, J.H., et al.. (2022). Sleep discrepancy is associated with alterations in the salience network in patients with insomnia disorder: an EEG-fMRI study. Neuroimage Clin. 35: 103111, https://doi.org/10.1016/j.nicl.2022.103111.Suche in Google Scholar PubMed PubMed Central

Lian, H., Li, Y., and Li, Y. (2021). Altered EEG microstate dynamics in mild cognitive impairment and Alzheimer’s disease. Clin. Neurophysiol. 132: 2861–2869, https://doi.org/10.1016/j.clinph.2021.08.015.Suche in Google Scholar PubMed

Lin, Y., Jin, J., Lv, R., Luo, Y., Dai, W., Li, W., Tang, Y., Wang, Y., Ye, X., and Lin, W.J. (2021). Repetitive transcranial magnetic stimulation increases the brain’s drainage efficiency in a mouse model of Alzheimer’s disease. Acta Neuropathol. Commun. 9: 102, https://doi.org/10.1186/s40478-021-01198-3.Suche in Google Scholar PubMed PubMed Central

Liu, Y., Wang, K., Yu, C., He, Y., Zhou, Y., Liang, M., Wang, L., and Jiang, T. (2008). Regional homogeneity, functional connectivity and imaging markers of Alzheimer’s disease: a review of resting-state fMRI studies. Neuropsychologia 46: 1648–1656, https://doi.org/10.1016/j.neuropsychologia.2008.01.027.Suche in Google Scholar PubMed

Liu, Z., Wei, W., Bai, L., Dai, R., You, Y., Chen, S., and Tian, J. (2014). Exploring the patterns of acupuncture on mild cognitive impairment patients using regional homogeneity. PLoS One 9: e99335, https://doi.org/10.1371/journal.pone.0099335.Suche in Google Scholar PubMed PubMed Central

Lozano, A.M., Fosdick, L., Chakravarty, M.M., Leoutsakos, J.M., Munro, C., Oh, E., Drake, K.E., Lyman, C.H., Rosenberg, P.B., Anderson, W.S., et al.. (2016). A phase II study of fornix deep brain stimulation in mild Alzheimer’s disease. J. Alzheimers Dis. 54: 777–787, https://doi.org/10.3233/jad-160017.Suche in Google Scholar

Lu, J., Testa, N., Jordan, R., Elyan, R., Kanekar, S., Wang, J., Eslinger, P., Yang, Q.X., Zhang, B., and Karunanayaka, P.R. (2019). Functional connectivity between the resting-state olfactory network and the Hippocampus in Alzheimer’s disease. Brain Sci. 9(12): 338, https://doi.org/10.3390/brainsci9120338.Suche in Google Scholar PubMed PubMed Central

Mansouri, S., Alharbi, Y., Haddad, F., Chabcoub, S., Alshrouf, A., and Abd-Elghany, A.A. (2021). Electrical impedance tomography – recent applications and developments. J. Electr. Bioimpedance 12: 50–62, https://doi.org/10.2478/joeb-2021-0007.Suche in Google Scholar PubMed PubMed Central

Mattia, D., Babiloni, F., Romigi, A., Cincotti, F., Bianchi, L., Sperli, F., Placidi, F., Bozzao, A., Giacomini, P., Floris, R., et al.. (2003). Quantitative EEG and dynamic susceptibility contrast MRI in Alzheimer’s disease: a correlative study. Clin. Neurophysiol. 114: 1210–1216, https://doi.org/10.1016/s1388-2457(03)00085-3.Suche in Google Scholar PubMed

McBride, J.C., Zhao, X., Munro, N.B., Smith, C.D., Jicha, G.A., Hively, L., Broster, L.S., Schmitt, F.A., Kryscio, R.J., and Jiang, Y. (2014). Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer’s disease. Comput. Methods Programs Biomed. 114: 153–163, https://doi.org/10.1016/j.cmpb.2014.01.019.Suche in Google Scholar PubMed PubMed Central

McDonough, I.M., Festini, S.B., and Wood, M.M. (2020). Risk for Alzheimer’s disease: a review of long-term episodic memory encoding and retrieval fMRI studies. Ageing Res. Rev. 62: 101133, https://doi.org/10.1002/alz.047420.Suche in Google Scholar

Mele, G., Cavaliere, C., Alfano, V., Orsini, M., Salvatore, M., and Aiello, M. (2019). Simultaneous EEG-fMRI for functional neurological assessment. Front. Neurol. 10: 848, https://doi.org/10.3389/fneur.2019.00848.Suche in Google Scholar PubMed PubMed Central

Menardi, A., Rossi, S., Koch, G., Hampel, H., Vergallo, A., Nitsche, M.A., Stern, Y., Borroni, B., Cappa, S.F., Cotelli, M., et al.. (2022). Toward noninvasive brain stimulation 2.0 in Alzheimer’s disease. Ageing Res. Rev. 75: 101555, https://doi.org/10.1016/j.arr.2021.101555.Suche in Google Scholar PubMed PubMed Central

Mesholam, R.I., Moberg, P.J., Mahr, R.N., and Doty, R.L. (1998). Olfaction in neurodegenerative disease: a meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s diseases. Arch. Neurol. 55: 84–90, https://doi.org/10.1001/archneur.55.1.84.Suche in Google Scholar PubMed

Michels, L., Muthuraman, M., Anwar, A.R., Kollias, S., Leh, S.E., Riese, F., Unschuld, P.G., Siniatchkin, M., Gietl, A.F., and Hock, C. (2017). Changes of functional and directed resting-state connectivity are associated with neuronal oscillations, ApoE genotype and amyloid deposition in mild cognitive impairment. Front. Aging Neurosci. 9: 304, https://doi.org/10.3389/fnagi.2017.00304.Suche in Google Scholar PubMed PubMed Central

Michels, L., Riese, F., Meyer, R., Kälin, A.M., Leh, S.E., Unschuld, P.G., Luechinger, R., Hock, C., O’Gorman, R., Kollias, S., et al.. (2021). EEG-fMRI signal coupling is modulated in subjects with mild cognitive impairment and amyloid deposition. Front. Aging Neurosci. 13: 631172, https://doi.org/10.3389/fnagi.2021.631172.Suche in Google Scholar PubMed PubMed Central

Mimura, Y., Nishida, H., Nakajima, S., Tsugawa, S., Morita, S., Yoshida, K., Tarumi, R., Ogyu, K., Wada, M., Kurose, S., et al.. (2021). Neurophysiological biomarkers using transcranial magnetic stimulation in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 121: 47–59, https://doi.org/10.1016/j.neubiorev.2020.12.003.Suche in Google Scholar PubMed

Mitchell, A.J., Beaumont, H., Ferguson, D., Yadegarfar, M., and Stubbs, B. (2014). Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: meta-analysis. Acta Psychiatr. Scand. 130: 439–451, https://doi.org/10.1111/acps.12336.Suche in Google Scholar PubMed

Moretti, D.V. (2015). Conversion of mild cognitive impairment patients in Alzheimer’s disease: prognostic value of Alpha3/Alpha2 electroencephalographic rhythms power ratio. Alzheimers Res. Ther. 7: 80, https://doi.org/10.1186/s13195-015-0162-x.Suche in Google Scholar PubMed PubMed Central

Moretti, D.V., Miniussi, C., Frisoni, G.B., Geroldi, C., Zanetti, O., Binetti, G., and Rossini, P.M. (2007). Hippocampal atrophy and EEG markers in subjects with mild cognitive impairment. Clin. Neurophysiol. 118: 2716–2729, https://doi.org/10.1016/j.clinph.2007.09.059.Suche in Google Scholar PubMed

Moretti, D.V., Paternicò, D., Binetti, G., Zanetti, O., and Frisoni, G.B. (2012). Analysis of grey matter in thalamus and basal ganglia based on EEG α3/α2 frequency ratio reveals specific changes in subjects with mild cognitive impairment. ASN Neuro 4: e00103, https://doi.org/10.1042/AN20120058.Suche in Google Scholar PubMed PubMed Central

Moretti, D.V., Pievani, M., Fracassi, C., Binetti, G., Rosini, S., Geroldi, C., Zanetti, O., Rossini, P.M., and Frisoni, G.B. (2009). Increase of theta/gamma and alpha3/alpha2 ratio is associated with amygdalo-hippocampal complex atrophy. J. Alzheimers Dis. 17: 349–357, https://doi.org/10.3233/jad-2009-1059.Suche in Google Scholar

Morgan, C.D. and Murphy, C. (2002). Olfactory event-related potentials in Alzheimer’s disease. J. Int. Neuropsychol. Soc. 8: 753–763, https://doi.org/10.1017/s1355617702860039.Suche in Google Scholar PubMed

Mormino, E.C., Smiljic, A., Hayenga, A.O., Onami, S.H., Greicius, M.D., Rabinovici, G.D., Janabi, M., Baker, S.L., Yen, I.V., Madison, C.M., et al.. (2011). Relationships between β-amyloid and functional connectivity in different components of the default mode network in aging. Cereb. Cortex 21: 2399–2407, https://doi.org/10.1093/cercor/bhr025.Suche in Google Scholar PubMed PubMed Central

Murphy, C. (2002). Olfactory functional testing: sensitivity and specificity for Alzheimer’s disease. Drug Dev. Res. 56: 123–131, https://doi.org/10.1002/ddr.10067.Suche in Google Scholar

Musaeus, C.S., Engedal, K., Høgh, P., Jelic, V., Khanna, A.R., Kjaer, T.W., Mørup, M., Naik, M., Oeksengaard, A.R., Santarnecchi, E., et al.. (2020). Changes in the left temporal microstate are a sign of cognitive decline in patients with Alzheimer’s disease. Brain Behav. 10: e01630, https://doi.org/10.1002/brb3.1630.Suche in Google Scholar PubMed PubMed Central

Musaeus, C.S., Nielsen, M.S., and Høgh, P. (2019). Microstates as disease and progression markers in patients with mild cognitive impairment. Front. Neurosci. 13: 563, https://doi.org/10.3389/fnins.2019.00563.Suche in Google Scholar PubMed PubMed Central

Nishida, K., Morishima, Y., Yoshimura, M., Isotani, T., Irisawa, S., Jann, K., Dierks, T., Strik, W., Kinoshita, T., and Koenig, T. (2013). EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer’s disease. Clin. Neurophysiol. 124: 1106–1114, https://doi.org/10.1016/j.clinph.2013.01.005.Suche in Google Scholar PubMed

Olichney, J.M., Iragui, V.J., Salmon, D.P., Riggins, B.R., Morris, S.K., and Kutas, M. (2006). Absent event-related potential (ERP) word repetition effects in mild Alzheimer’s disease. Clin. Neurophysiol. 117: 1319–1330, https://doi.org/10.1016/j.clinph.2006.02.022.Suche in Google Scholar PubMed PubMed Central

Omidvarnia, A., Kowalczyk, M.A., Pedersen, M., and Jackson, G.D. (2019). Towards fast and reliable simultaneous EEG-fMRI analysis of epilepsy with automatic spike detection. Clin. Neurophysiol. 130: 368–378, https://doi.org/10.1016/j.clinph.2018.11.024.Suche in Google Scholar PubMed

Pan, P., Zhu, L., Yu, T., Shi, H., Zhang, B., Qin, R., Zhu, X., Qian, L., Zhao, H., Zhou, H., et al.. (2017). Aberrant spontaneous low-frequency brain activity in amnestic mild cognitive impairment: a meta-analysis of resting-state fMRI studies. Ageing Res. Rev. 35: 12–21, https://doi.org/10.1016/j.arr.2016.12.001.Suche in Google Scholar PubMed

Pascual-Marqui, R.D., Michel, C.M., and Lehmann, D. (1995). Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans. Biomed. Eng. 42: 658–665, https://doi.org/10.1109/10.391164.Suche in Google Scholar PubMed

Patel, T., Polikar, R., Davatzikos, C., and Clark, C.M. (2008). EEG and MRI data fusion for early diagnosis of Alzheimer’s disease. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2008: 1757–1760, https://doi.org/10.1109/IEMBS.2008.4649517.Suche in Google Scholar PubMed

Pedroso, R.V., Fraga, F.J., Corazza, D.I., Andreatto, C.A., Coelho, F.G., Costa, J.L., and Santos-Galduróz, R.F. (2012). P300 latency and amplitude in Alzheimer’s disease: a systematic review. Braz. J. Otorhinolaryngol. 78: 126–132, https://doi.org/10.1590/s1808-86942012000400023.Suche in Google Scholar PubMed PubMed Central

Peters, J.C., Reithler, J., Graaf, T.A., Schuhmann, T., Goebel, R., and Sack, A.T. (2020). Concurrent human TMS-EEG-fMRI enables monitoring of oscillatory brain state-dependent gating of cortico-subcortical network activity. Commun. Biol. 3: 40, https://doi.org/10.1038/s42003-020-0764-0.Suche in Google Scholar PubMed PubMed Central

Peters, J.C., Reithler, J., Schuhmann, T., de Graaf, T., Uludag, K., Goebel, R., and Sack, A.T. (2013). On the feasibility of concurrent human TMS-EEG-fMRI measurements. J. Neurophysiol. 109: 1214–1227, https://doi.org/10.1152/jn.00071.2012.Suche in Google Scholar PubMed PubMed Central

Petersen, R.C. (2004). Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256: 183–194, https://doi.org/10.1111/j.1365-2796.2004.01388.x.Suche in Google Scholar PubMed

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 118: 2128–2148, https://doi.org/10.1016/j.clinph.2007.04.019.Suche in Google Scholar PubMed PubMed Central

Polikar, R., Tilley, C., Hillis, B., and Clark, C.M. (2010). Multimodal EEG, MRI and PET data fusion for Alzheimer’s disease diagnosis. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2010: 6058–6061, https://doi.org/10.1109/IEMBS.2010.5627621.Suche in Google Scholar PubMed

Prichep, L.S., John, E.R., Ferris, S.H., Reisberg, B., Almas, M., Alper, K., and Cancro, R. (1994). Quantitative EEG correlates of cognitive deterioration in the elderly. Neurobiol. Aging 15: 85–90, https://doi.org/10.1016/0197-4580(94)90147-3.Suche in Google Scholar PubMed

Quevenco, F.C., van Bergen, J.M., Treyer, V., Studer, S.T., Kagerer, S.M., Meyer, R., Gietl, A.F., Kaufmann, P.A., Nitsch, R.M., Hock, C., et al.. (2020). Functional brain network connectivity patterns associated with normal cognition at old-age, local β-amyloid, Tau, and APOE4. Front. Aging Neurosci. 12: 46, https://doi.org/10.3389/fnagi.2020.00046.Suche in Google Scholar PubMed PubMed Central

Rabin, L.A., Smart, C.M., and Amariglio, R.E. (2017). Subjective cognitive decline in preclinical Alzheimer’s disease. Annu. Rev. Clin. Psychol. 13: 369–396, https://doi.org/10.1146/annurev-clinpsy-032816-045136.Suche in Google Scholar PubMed

Rae-Grant, A., Blume, W., Lau, C., Hachinski, V.C., Fisman, M., and Merskey, H. (1987). The electroencephalogram in Alzheimer-type dementia. A sequential study correlating the electroencephalogram with psychometric and quantitative pathologic data. Arch. Neurol. 44: 50–54, https://doi.org/10.1001/archneur.1987.00520130042015.Suche in Google Scholar PubMed

Rajji, T.K. (2019). Transcranial magnetic and electrical stimulation in Alzheimer’s disease and mild cognitive impairment: a review of randomized controlled trials. Clin. Pharmacol. Ther. 106: 776–780, https://doi.org/10.1002/cpt.1574.Suche in Google Scholar PubMed

Rajkumar, R., Farrher, E., Mauler, J., Sripad, P., Régio Brambilla, C., Rota Kops, E., Scheins, J., Dammers, J., Lerche, C., Langen, K.J., et al.. (2021). Comparison of EEG microstates with resting state fMRI and FDG-PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data. Hum. Brain Mapp. 42: 4122–4133, https://doi.org/10.1002/hbm.24429.Suche in Google Scholar PubMed PubMed Central

Sankar, T., Chakravarty, M.M., Bescos, A., Lara, M., Obuchi, T., Laxton, A.W., McAndrews, M.P., Tang-Wai, D.F., Workman, C.I., Smith, G.S., et al.. (2015). Deep brain stimulation influences brain structure in Alzheimer’s disease. Brain Stimul. 8: 645–654, https://doi.org/10.1016/j.brs.2014.11.020.Suche in Google Scholar PubMed PubMed Central

Schumacher, J., Peraza, L.R., Firbank, M., Thomas, A.J., Kaiser, M., Gallagher, P., O’Brien, J.T., Blamire, A.M., and Taylor, J.P. (2019). Dysfunctional brain dynamics and their origin in Lewy body dementia. Brain 142: 1767–1782, https://doi.org/10.1093/brain/awz069.Suche in Google Scholar PubMed PubMed Central

Shah, N.J., Arrubla, J., Rajkumar, R., Farrher, E., Mauler, J., Kops, E.R., Tellmann, L., Scheins, J., Boers, F., Dammers, J., et al.. (2017). Multimodal fingerprints of resting state networks as assessed by simultaneous trimodal MR-PET-EEG imaging. Sci. Rep. 7: 6452, https://doi.org/10.1038/s41598-017-05484-w.Suche in Google Scholar PubMed PubMed Central

Shaw, K., Bell, L., Boyd, K., Grijseels, D.M., Clarke, D., Bonnar, O., Crombag, H.S., and Hall, C.N. (2021). Neurovascular coupling and oxygenation are decreased in hippocampus compared to neocortex because of microvascular differences. Nat. Commun. 12: 3190, https://doi.org/10.1038/s41467-021-23508-y.Suche in Google Scholar PubMed PubMed Central

Sheline, Y.I., Raichle, M.E., Snyder, A.Z., Morris, J.C., Head, D., Wang, S., and Mintun, M.A. (2010). Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol. Psychiatry 67: 584–587, https://doi.org/10.1016/j.biopsych.2009.08.024.Suche in Google Scholar PubMed PubMed Central

Shu, H., Gu, L., Yang, P., Lucas, M.V., Gao, L., Zhang, H., Zhang, H., Xu, Z., Wu, W., Li, L., et al.. (2021). Disturbed temporal dynamics of episodic retrieval activity with preserved spatial activity pattern in amnestic mild cognitive impairment: a simultaneous EEG-fMRI study. Neuroimage Clin. 30: 102572, https://doi.org/10.1016/j.nicl.2021.102572.Suche in Google Scholar PubMed PubMed Central

Smailovic, U., Koenig, T., Laukka, E.J., Kalpouzos, G., Andersson, T., Winblad, B., and Jelic, V. (2019). EEG time signature in Alzheimer´s disease: functional brain networks falling apart. Neuroimage Clin. 24: 102046, https://doi.org/10.1016/j.nicl.2019.102046.Suche in Google Scholar PubMed PubMed Central

Son, G., Jahanshahi, A., Yoo, S.J., Boonstra, J.T., Hopkins, D.A., Steinbusch, H.W.M., and Moon, C. (2021). Olfactory neuropathology in Alzheimer’s disease: a sign of ongoing neurodegeneration. BMB Rep. 54: 295–304, https://doi.org/10.5483/bmbrep.2021.54.6.055.Suche in Google Scholar

Sotero, R.C. and Trujillo-Barreto, N.J. (2008). Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism. Neuroimage 39: 290–309, https://doi.org/10.1016/j.neuroimage.2007.08.001.Suche in Google Scholar PubMed

Sperling, R.A., Laviolette, P.S., O’Keefe, K., O’Brien, J., Rentz, D.M., Pihlajamaki, M., Marshall, G., Hyman, B.T., Selkoe, D.J., Hedden, T., et al.. (2009). Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 63: 178–188, https://doi.org/10.1016/j.neuron.2009.07.003.Suche in Google Scholar PubMed PubMed Central

Stam, C.J., Montez, T., Jones, B.F., Rombouts, S.A., van der Made, Y., Pijnenburg, Y.A., and Scheltens, P. (2005). Disturbed fluctuations of resting state EEG synchronization in Alzheimer’s disease. Clin. Neurophysiol. 116: 708–715, https://doi.org/10.1016/j.clinph.2004.09.022.Suche in Google Scholar PubMed

Steffener, J., Motter, J.N., Tabert, M.H., and Devanand, D.P. (2021). Odorant-induced brain activation as a function of normal aging and Alzheimer’s disease: a preliminary study. Behav. Brain Res. 402: 113078, https://doi.org/10.1016/j.bbr.2020.113078.Suche in Google Scholar PubMed PubMed Central

Stevens, A. and Kircher, T. (1998). Cognitive decline unlike normal aging is associated with alterations of EEG temporo-spatial characteristics. Eur. Arch. Psychiatry Clin. Neurosci. 248: 259–266, https://doi.org/10.1007/s004060050047.Suche in Google Scholar PubMed

Steyrl, D. and Müller-Putz, G.R. (2019). Artifacts in EEG of simultaneous EEG-fMRI: pulse artifact remainders in the gradient artifact template are a source of artifact residuals after average artifact subtraction. J. Neural. Eng. 16: 016011, https://doi.org/10.1088/1741-2552/aaec42.Suche in Google Scholar PubMed

Strik, W.K., Chiaramonti, R., Muscas, G.C., Paganini, M., Mueller, T.J., Fallgatter, A.J., Versari, A., and Zappoli, R. (1997). Decreased EEG microstate duration and anteriorisation of the brain electrical fields in mild and moderate dementia of the Alzheimer type. Psychiatry Res. 75: 183–191, https://doi.org/10.1016/s0925-4927(97)00054-1.Suche in Google Scholar PubMed

Tait, L., Tamagnini, F., Stothart, G., Barvas, E., Monaldini, C., Frusciante, R., Volpini, M., Guttmann, S., Coulthard, E., Brown, J.T., et al.. (2020). EEG microstate complexity for aiding early diagnosis of Alzheimer’s disease. Sci. Rep. 10: 17627, https://doi.org/10.1038/s41598-020-74790-7.Suche in Google Scholar PubMed PubMed Central

Talwar, P., Kushwaha, S., Chaturvedi, M., and Mahajan, V. (2021). Systematic review of different neuroimaging correlates in mild cognitive impairment and Alzheimer’s disease. Clin. Neuroradiol. 31: 953–967, https://doi.org/10.1007/s00062-021-01057-7.Suche in Google Scholar PubMed

Tarkka, I.M., Lehtovirta, M., Soininen, H., Pääkkönen, A., Karhu, J., and Partanen, J. (2002). Auditory adaptation is differentially impaired in familial and sporadic Alzheimer’s disease. Biomed. Pharmacother. 56: 45–49, https://doi.org/10.1016/s0753-3322(01)00149-4.Suche in Google Scholar PubMed

Teipel, S.J., Brüggen, K., Temp, A.G.M., Jakobi, K., Weber, M.A., and Berger, C. (2021). Simultaneous assessment of electroencephalography microstates and resting state intrinsic networks in Alzheimer’s disease and healthy aging. Front. Neurol. 12: 637542, https://doi.org/10.3389/fneur.2021.637542.Suche in Google Scholar PubMed PubMed Central

Ubeda-Bañon, I., Saiz-Sanchez, D., Flores-Cuadrado, A., Rioja-Corroto, E., Gonzalez-Rodriguez, M., Villar-Conde, S., Astillero-Lopez, V., Cabello-de la Rosa, J.P., Gallardo-Alcañiz, M.J., Vaamonde-Gamo, J., et al.. (2020). The human olfactory system in two proteinopathies: Alzheimer’s and Parkinson’s diseases. Transl. Neurodegener. 9: 22, https://doi.org/10.1186/s40035-020-00200-7.Suche in Google Scholar PubMed PubMed Central

Van de Ville, D., Britz, J., and Michel, C.M. (2010). EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc. Natl. Acad. Sci. U. S. A. 107: 18179–18184, https://doi.org/10.1073/pnas.1007841107.Suche in Google Scholar PubMed PubMed Central

van der Hiele, K., Vein, A.A., Reijntjes, R.H., Westendorp, R.G., Bollen, E.L., van Buchem, M.A., van Dijk, J.G., and Middelkoop, H.A. (2007). EEG correlates in the spectrum of cognitive decline. Clin. Neurophysiol. 118: 1931–1939, https://doi.org/10.1016/j.clinph.2007.05.070.Suche in Google Scholar PubMed

Van Egroo, M., Chylinski, D., Narbutas, J., Besson, G., Muto, V., Schmidt, C., Marzoli, D., Cardone, P., Vandeleene, N., Grignard, M., et al. (2021). Early brainstem [18F]THK5351 uptake is linked to cortical hyperexcitability in healthy aging. JCI Insight 6(2): e142514, https://doi.org/10.1172/jci.insight.142514.Suche in Google Scholar PubMed PubMed Central

Van Eyndhoven, S., Dupont, P., Tousseyn, S., Vervliet, N., Van Paesschen, W., Van Huffel, S., and Hunyadi, B. (2021). Augmenting interictal mapping with neurovascular coupling biomarkers by structured factorization of epileptic EEG and fMRI data. Neuroimage 228: 117652, https://doi.org/10.1016/j.neuroimage.2020.117652.Suche in Google Scholar PubMed PubMed Central

van Graan, L.A., Lemieux, L., and Chaudhary, U.J. (2015). Methods and utility of EEG-fMRI in epilepsy. Quant. Imaging Med. Surg. 5: 300–312, https://doi.org/10.3978/j.issn.2223-4292.2015.02.04.Suche in Google Scholar PubMed PubMed Central

van Harten, A.C., Mielke, M.M., Swenson-Dravis, D.M., Hagen, C.E., Edwards, K.K., Roberts, R.O., Geda, Y.E., Knopman, D.S., and Petersen, R.C. (2018). Subjective cognitive decline and risk of MCI: the Mayo clinic study of aging. Neurology 91: e300–e312, https://doi.org/10.1212/wnl.0000000000005863.Suche in Google Scholar

van Oostveen, W.M. and de Lange, E.C.M. (2021). Imaging techniques in Alzheimer’s disease: a review of applications in early diagnosis and longitudinal monitoring. Int. J. Mol. Sci. 22(4): 2110, https://doi.org/10.3390/ijms22042110.Suche in Google Scholar PubMed PubMed Central

Vlahou, E.L., Thurm, F., Kolassa, I.T., and Schlee, W. (2014). Resting-state slow wave power, healthy aging and cognitive performance. Sci. Rep. 4: 5101, https://doi.org/10.1038/srep05101.Suche in Google Scholar PubMed PubMed Central

Wang, C., Pan, Y., Liu, Y., Xu, K., Hao, L., Huang, F., Ke, J., Sheng, L., Ma, H., and Guo, W. (2018). Aberrant default mode network in amnestic mild cognitive impairment: a meta-analysis of independent component analysis studies. Neurol. Sci. 39: 919–931, https://doi.org/10.1007/s10072-018-3306-5.Suche in Google Scholar PubMed

Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.O., Nordberg, A., Bäckman, L., Albert, M., Almkvist, O., et al.. (2004). Mild cognitive impairment--beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J. Intern. Med. 256: 240–246, https://doi.org/10.1111/j.1365-2796.2004.01380.x.Suche in Google Scholar PubMed

Wolfsgruber, S., Kleineidam, L., Guski, J., Polcher, A., Frommann, I., Roeske, S., Spruth, E.J., Franke, C., Priller, J., Kilimann, I., et al.. (2020). Minor neuropsychological deficits in patients with subjective cognitive decline. Neurology 95: e1134–e1143, https://doi.org/10.1212/wnl.0000000000010142.Suche in Google Scholar PubMed

Yener, G.G., Emek-Savaş, D.D., Lizio, R., Çavuşoğlu, B., Carducci, F., Ada, E., Güntekin, B., Babiloni, C.C., and Başar, E. (2016). Frontal delta event-related oscillations relate to frontal volume in mild cognitive impairment and healthy controls. Int. J. Psychophysiol. 103: 110–117, https://doi.org/10.1016/j.ijpsycho.2015.02.005.Suche in Google Scholar PubMed

Zhu, W.M., Neuhaus, A., Beard, D.J., Sutherland, B.A., and DeLuca, G.C. (2022). Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer’s disease. Brain 145: 2276–2292, https://doi.org/10.1093/brain/awac174.Suche in Google Scholar PubMed PubMed Central

Zotev, V. and Bodurka, J. (2020). Effects of simultaneous real-time fMRI and EEG neurofeedback in major depressive disorder evaluated with brain electromagnetic tomography. Neuroimage Clin. 28: 102459, https://doi.org/10.1016/j.nicl.2020.102459.Suche in Google Scholar PubMed PubMed Central

Received: 2023-08-28
Accepted: 2023-12-01
Published Online: 2024-01-01
Published in Print: 2024-06-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2023-0098/html?lang=de
Button zum nach oben scrollen