Startseite Intracortical brain-computer interfaces for improved motor function: a systematic review
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Intracortical brain-computer interfaces for improved motor function: a systematic review

  • Matthew W. Holt ORCID logo EMAIL logo , Eric C. Robinson ORCID logo , Nathan A. Shlobin ORCID logo , Jacob T. Hanson ORCID logo und Ismail Bozkurt ORCID logo
Veröffentlicht/Copyright: 17. Oktober 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this systematic review, we address the status of intracortical brain-computer interfaces (iBCIs) applied to the motor cortex to improve function in patients with impaired motor ability. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 Guidelines for Systematic Reviews. Risk Of Bias In Non-randomized Studies – of Interventions (ROBINS-I) and the Effective Public Health Practice Project (EPHPP) were used to assess bias and quality. Advances in iBCIs in the last two decades demonstrated the use of iBCI to activate limbs for functional tasks, achieve neural typing for communication, and other applications. However, the inconsistency of performance metrics employed by these studies suggests the need for standardization. Each study was a pilot clinical trial consisting of 1–4, majority male (64.28 %) participants, with most trials featuring participants treated for more than 12 months (55.55 %). The systems treated patients with various conditions: amyotrophic lateral sclerosis, stroke, spinocerebellar degeneration without cerebellar involvement, and spinal cord injury. All participants presented with tetraplegia at implantation and were implanted with microelectrode arrays via pneumatic insertion, with nearly all electrode locations solely at the precentral gyrus of the motor cortex (88.88 %). The development of iBCI devices using neural signals from the motor cortex to improve motor-impaired patients has enhanced the ability of these systems to return ability to their users. However, many milestones remain before these devices can prove their feasibility for recovery. This review summarizes the achievements and shortfalls of these systems and their respective trials.


Corresponding author: Matthew W. Holt, Department of Natural Sciences, University of South Carolina Beaufort, 1 University Blvd, Bluffton, 29909, USA, E-mail:

Acknowledgments

Special thanks to Justin Campbell for his insight, edits, and advice.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. The CRediT author statements are described below for the author contributions in this template. Matthew W Holt: Conceptualization, Methodology, Project Administration, Writing – Original Draft, Formal Analysis, Validation, Investigation Eric C Robinson: Investigation, Formal Analysis, Writing – Original Draft Nathan A Shlobin: Resources, Methodology, Investigation, Validation Jacob T Hanson: Writing – Original Draft Ismail Bozkurt: Supervision, Conceptualization, Writing – Original Draft, Resources, Methodology, Validation, Writing – review and editing.

  3. Competing interests: The author(s) state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

Ajiboye, A.B., Willett, F.R., Young, D.R., Memberg, W.D., Murphy, B.A., Miller, J.P., Walter, B.L., Sweet, J.A., Hoyen, H.A., Keith, M.W., et al.. (2017). Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 389: 1821–1830, https://doi.org/10.1016/s0140-6736(17)30601-3.Suche in Google Scholar PubMed PubMed Central

Annetta, N.V., Zhang, M., Mysiw, W.J., Rezai, A.R., Sharma, G., Friend, J., Schimmoeller, A., Buck, V.S., Friedenberg, D.A., Bouton, C.E., et al.. (2019). A high definition noninvasive neuromuscular electrical stimulation system for cortical control of combinatorial rotary hand movements in a human with tetraplegia. IEEE Trans. Biomed. Eng. 66: 910–919, https://doi.org/10.1109/tbme.2018.2864104.Suche in Google Scholar

Bacher, D., Jarosiewicz, B., Masse, N.Y., Stavisky, S.D., Simeral, J.D., Newell, K., Oakley, E.M., Cash, S.S., Friehs, G., and Hochberg, L.R. (2015). Neural point-and-click communication by a person with incomplete locked-in syndrome. Neurorehabilitation Neural Repair 29: 462–471, https://doi.org/10.1177/1545968314554624.Suche in Google Scholar PubMed PubMed Central

Bockbrader, M., Annetta, N., Friedenberg, D., Schwemmer, M., Skomrock, N., Colachis, S., Zhang, M., Bouton, C., Rezai, A., Sharma, G., et al.. (2019). Clinically significant gains in skillful grasp coordination by an individual with tetraplegia using an implanted brain-computer interface with forearm transcutaneous muscle stimulation. Arch. Phys. Med. Rehabil. 100: 1201–1217, https://doi.org/10.1016/j.apmr.2018.07.445.Suche in Google Scholar PubMed

Bouton, C.E., Shaikhouni, A., Annetta, N.V., Bockbrader, M.A., Friedenberg, D.A., Nielson, D.M., Sharma, G., Sederberg, P.B., Glenn, B.C., Mysiw, W.J., et al.. (2016). Restoring cortical control of functional movement in a human with quadriplegia. Nature 533: 247–250, https://doi.org/10.1038/nature17435.Suche in Google Scholar PubMed

Brandman, D.M., Hosman, T., Saab, J., Burkhart, M.C., Shanahan, B.E., Ciancibello, J.G., Sarma, A.A., Milstein, D.J., Vargas-Irwin, C.E., Franco, B., et al.. (2018). Rapid calibration of an intracortical brain–computer interface for people with tetraplegia. J. Neural. Eng. 15: 026007, https://doi.org/10.1088/1741-2552/aa9ee7.Suche in Google Scholar PubMed PubMed Central

Buzsàki, G., Bickford, R.G., Ryan, L.J., Young, S., Prohaska, O., Mandel, R.J., and Gage, F.H. (1989). Multisite recording of brain field potentials and unit activity in freely moving rats. J. Neurosci. Methods 28: 209–217, https://doi.org/10.1016/0165-0270(89)90038-1.Suche in Google Scholar PubMed

Colachis, S.C., Bockbrader, M.A., Zhang, M., Friedenberg, D.A., Annetta, N.V., Schwemmer, M.A., Skomrock, N.D., Mysiw, W.J., Rezai, A.R., Bresler, H.S., et al.. (2018). Dexterous control of seven functional hand movements using cortically-controlled transcutaneous muscle stimulation in a person with tetraplegia. Front. Neurosci. 12: 208, https://doi.org/10.3389/fnins.2018.00208.Suche in Google Scholar PubMed PubMed Central

Collinger, J.L., Gaunt, R.A., and Schwartz, A.B. (2018). Progress towards restoring upper limb movement and sensation through intracortical brain-computer interfaces. Curr. Opin. Biomed. Eng. 8: 84–92, https://doi.org/10.1016/j.cobme.2018.11.005.Suche in Google Scholar

Collinger, J.L., Wodlinger, B., Downey, J.E., Wang, W., Tyler-Kabara, E.C., Weber, D.J., McMorland, A.J., Velliste, M., Boninger, M.L., and Schwartz, A.B. (2013). High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381: 557–564, https://doi.org/10.1016/s0140-6736(12)61816-9.Suche in Google Scholar

Downey, J.E., Brane, L., Gaunt, R.A., Tyler-Kabara, E.C., Boninger, M.L., and Collinger, J.L. (2017). Motor cortical activity changes during neuroprosthetic-controlled object interaction. Sci. Rep. 7: 16947, https://doi.org/10.1038/s41598-017-17222-3.Suche in Google Scholar PubMed PubMed Central

Downey, J.E., Weiss, J.M., Flesher, S.N., Thumser, Z.C., Marasco, P.D., Boninger, M.L., Gaunt, R.A., and Collinger, J.L. (2018). Implicit grasp force representation in human motor cortical recordings. Front. Neurosci. 12: 801, https://doi.org/10.3389/fnins.2018.00801.Suche in Google Scholar PubMed PubMed Central

Downey, J.E., Weiss, J.M., Muelling, K., Venkatraman, A., Valois, J.-S., Hebert, M., Bagnell, J.A., Schwartz, A.B., and Collinger, J.L. (2016). Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping. J. NeuroEng. Rehabil. 13: 28, https://doi.org/10.1186/s12984-016-0134-9.Suche in Google Scholar PubMed PubMed Central

Fatima, N., Shuaib, A., and Saqqur, M. (2020). Intra-cortical brain-machine interfaces for controlling upper-limb powered muscle and robotic systems in spinal cord injury. Clin. Neurol. Neurosurg. 196: 106069, https://doi.org/10.1016/j.clineuro.2020.106069.Suche in Google Scholar PubMed

Fitzsimmons, N.A. (2009). Extracting kinematic parameters for monkey bipedal walking from cortical neuronal ensemble activity. Front. Integr. Neurosci. 3: 1–19, https://doi.org/10.3389/neuro.07.003.2009.Suche in Google Scholar PubMed PubMed Central

Flesher, S.N., Downey, J.E., Weiss, J.M., Hughes, C.L., Herrera, A.J., Tyler-Kabara, E.C., Boninger, M.L., Collinger, J.L., and Gaunt, R.A. (2021). A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 372: 831–836, https://doi.org/10.1126/science.abd0380.Suche in Google Scholar PubMed PubMed Central

Frank, K. (1971). Use of neural signals to control external device. Neurosci. Res. Prog. Bull. 9: 113–118.Suche in Google Scholar

Friedenberg, D.A., Schwemmer, M.A., Landgraf, A.J., Annetta, N.V., Bockbrader, M.A., Bouton, C.E., Zhang, M., Rezai, A.R., Mysiw, W.J., Bresler, H.S., et al.. (2017). Neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human. Sci. Rep. 7: 8386, https://doi.org/10.1038/s41598-017-08120-9.Suche in Google Scholar PubMed PubMed Central

Gilja, V., Pandarinath, C., Blabe, C.H., Nuyujukian, P., Simeral, J.D., Sarma, A.A., Sorice, B.L., Perge, J.A., Jarosiewicz, B., Hochberg, L.R., et al.. (2015). Clinical translation of a high-performance neural prosthesis. Nat. Med. 21: 1142–1145, https://doi.org/10.1038/nm.3953.Suche in Google Scholar PubMed PubMed Central

Hochberg, L.R., Bacher, D., Jarosiewicz, B., Masse, N.Y., Simeral, J.D., Vogel, J., Haddadin, S., Liu, J., Cash, S.S., Van Der Smagt, P., et al.. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485: 372–375, https://doi.org/10.1038/nature11076.Suche in Google Scholar PubMed PubMed Central

Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., Branner, A., Chen, D., Penn, R.D., and Donoghue, J.P. (2006). Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442: 164–171, https://doi.org/10.1038/nature04970.Suche in Google Scholar PubMed

Jackson, N. and Waters, E. (2005). Criteria for the systematic review of health promotion and public health interventions. Health Promot. Int. 20: 367–374, https://doi.org/10.1093/heapro/dai022.Suche in Google Scholar PubMed

Jarosiewicz, B., Masse, N.Y., Bacher, D., Cash, S.S., Eskandar, E., Friehs, G., Donoghue, J.P., and Hochberg, L.R. (2013). Advantages of closed-loop calibration in intracortical brain–computer interfaces for people with tetraplegia. J. Neural. Eng. 10: 046012, https://doi.org/10.1088/1741-2560/10/4/046012.Suche in Google Scholar PubMed PubMed Central

Jarosiewicz, B., Sarma, A.A., Bacher, D., Masse, N.Y., Simeral, J.D., Sorice, B., Oakley, E.M., Blabe, C., Pandarinath, C., Gilja, V., et al. (2015). Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface. Sci. Transl. Med. 313: 1–10, https://doi.org/10.1126/scitranslmed.aac7328.Suche in Google Scholar PubMed PubMed Central

Lebedev, M.A., Carmena, J.M., O’Doherty, J.E., Zacksenhouse, M., Henriquez, C.S., Principe, J.C., and Nicolelis, M.A.L. (2005). Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface. J. Neurosci. 25: 4681–4693, https://doi.org/10.1523/jneurosci.4088-04.2005.Suche in Google Scholar

Lebedev, M.A. and Nicolelis, M.A.L. (2017). Brain-machine interfaces: from basic science to neuroprostheses and neurorehabilitation. Physiol. Rev. 97: 767–837, https://doi.org/10.1152/physrev.00027.2016.Suche in Google Scholar PubMed

Moses, D.A., Metzger, S.L., Liu, J.R., Anumanchipalli, G.K., Makin, J.G., Sun, P.F., Chartier, J., Dougherty, M.E., Liu, P.M., Abrams, G.M., et al.. (2021). Neuroprosthesis for decoding speech in a paralyzed person with anarthria. N. Engl. J. Med. 385: 217–227, https://doi.org/10.1056/nejmoa2027540.Suche in Google Scholar PubMed PubMed Central

Nicolelis, M.A., Baccala, L.A., Lin, R.C., and Chapin, J.K. (1995). Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. Science 268: 1353–1358, https://doi.org/10.1126/science.7761855.Suche in Google Scholar PubMed

Nicolelis, M.A.L., Ghazanfar, A.A., Stambaugh, C.R., Oliveira, L.M.O., Laubach, M., Chapin, J.K., Nelson, R.J., and Kaas, J.H. (1998). Simultaneous encoding of tactile information by three primate cortical areas. Nat. Neurosci. 1: 621–630, https://doi.org/10.1038/2855.Suche in Google Scholar PubMed

Nicolelis, M.A., Lin, R.C., Woodward, D.J., and Chapin, J.K. (1993a). Dynamic and distributed properties of many-neuron ensembles in the ventral posterior medial thalamus of awake rats. Proc. Natl. Acad. Sci. U.S.A. 90: 2212–2216, https://doi.org/10.1073/pnas.90.6.2212.Suche in Google Scholar PubMed PubMed Central

Nicolelis, M.A., Lin, R.C., Woodward, D.J., and Chapin, J.K. (1993b). Induction of immediate spatiotemporal changes in thalamic networks by peripheral block of ascending cutaneous information. Nature 361: 533–536, https://doi.org/10.1038/361533a0.Suche in Google Scholar PubMed

Nowlis, D.P. and Kamiya, J. (1970). The control of electroencephalographic alpha rhythms through auditory feedback and the associated mental activity. Psychophysiology 6: 476–484, https://doi.org/10.1111/j.1469-8986.1970.tb01756.x.Suche in Google Scholar PubMed

Nowlis, D.P. and Wortz, E.C. (1973). Control of the ratio of midline parietal to midline frontal EEG alpha rhythms through auditory feedback. Percept. Mot. Skills 37: 815–824, https://doi.org/10.1177/003151257303700329.Suche in Google Scholar PubMed

Nuyujukian, P., Albites Sanabria, J., Saab, J., Pandarinath, C., Jarosiewicz, B., Blabe, C.H., Franco, B., Mernoff, S.T., Eskandar, E.N., Simeral, J.D., et al.. (2018). Cortical control of a tablet computer by people with paralysis. PLoS One 13: e0204566, https://doi.org/10.1371/journal.pone.0204566.Suche in Google Scholar PubMed PubMed Central

O’Doherty, J.E., Lebedev, M.A., Ifft, P.J., Zhuang, K.Z., Shokur, S., Bleuler, H., and Nicolelis, M.A.L. (2011). Active tactile exploration using a brain-machine-brain interface. Nature 479: 228–231, https://doi.org/10.1038/nature10489.Suche in Google Scholar PubMed PubMed Central

Ouzzani, M., Hammady, H., Fedorowicz, Z., and Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 5: 210, https://doi.org/10.1186/s13643-016-0384-4.Suche in Google Scholar PubMed PubMed Central

Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Br. Med. J. 372: n71, https://doi.org/10.1136/bmj.n71.Suche in Google Scholar PubMed PubMed Central

Pandarinath, C., Nuyujukian, P., Blabe, C.H., Sorice, B.L., Saab, J., Willett, F.R., Hochberg, L.R., Shenoy, K.V., and Henderson, J.M. (2017). High performance communication by people with paralysis using an intracortical brain-computer interface. ELife 6: e18554, https://doi.org/10.7554/elife.18554.Suche in Google Scholar

Patil, P.G., Carmena, J.M., Nicolelis, M.A.L., and Turner, D.A. (2004). Ensemble recordings of human subcortical neurons as a source of motor control signals for a brain-machine interface. Neurosurgery 55: 27–35; discussion 35–38, https://doi.org/10.1227/01.neu.0000126872.23715.e5.Suche in Google Scholar

Quick, K.M., Weiss, J.M., Clemente, F., Gaunt, R.A., and Collinger, J.L. (2020). Intracortical microstimulation feedback improves grasp force accuracy in a human using a brain-computer interface. In: 2020 42nd annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 3355–3358.10.1109/EMBC44109.2020.9175926Suche in Google Scholar PubMed PubMed Central

Schmidt, E.M. (1993). Cortical control of robotic devices and neuromuscular stimulators. In: Neurobionics. Elsevier, Amsterdam, pp. 289–295.10.1016/B978-0-444-89958-3.50020-6Suche in Google Scholar

Sharma, G., Friedenberg, D.A., Annetta, N., Glenn, B., Bockbrader, M., Majstorovic, C., Domas, S., Mysiw, W.J., Rezai, A., and Bouton, C. (2016). Using an artificial neural bypass to restore cortical control of rhythmic movements in a human with quadriplegia. Sci. Rep. 6: 33807, https://doi.org/10.1038/srep33807.Suche in Google Scholar PubMed PubMed Central

Shih, J.J., Krusienski, D.J., and Wolpaw, J.R. (2012). Brain-computer interfaces in medicine. Mayo Clin. Proc. 87: 268–279, https://doi.org/10.1016/j.mayocp.2011.12.008.Suche in Google Scholar PubMed PubMed Central

Simeral, J.D., Hosman, T., Saab, J., Flesher, S.N., Vilela, M., Franco, B., Kelemen, J.N., Brandman, D.M., Ciancibello, J.G., Rezaii, P.G., et al.. (2021). Home use of a percutaneous wireless intracortical brain-computer interface by individuals with tetraplegia. IEEE Trans. Biomed. Eng. 68: 2313–2325, https://doi.org/10.1109/tbme.2021.3069119.Suche in Google Scholar

Stavisky, S.D., Willett, F.R., Wilson, G.H., Murphy, B.A., Rezaii, P., Avansino, D.T., Memberg, W.D., Miller, J.P., Kirsch, R.F., Hochberg, L.R., et al.. (2019). Neural ensemble dynamics in dorsal motor cortex during speech in people with paralysis. eLife 8: e46015, https://doi.org/10.7554/elife.46015.Suche in Google Scholar PubMed PubMed Central

Sterman, M.B. (1973). Neurophysiologic and clinical studies of sensorimotor EEG biofeedback training: some effects on epilepsy. Semin. Psychiatr. 5: 507–525.Suche in Google Scholar

Sterman, M.B. (1981). EEG biofeedback: physiological behavior modification. Neurosci. Biobehav. Rev. 5: 405–412, https://doi.org/10.1016/0149-7634(81)90036-1.Suche in Google Scholar PubMed

Sterman, M.B. and Friar, L. (1972). Suppression of seizures in an epileptic following sensorimotor EEG feedback training. Electroencephalogr. Clin. Neurophysiol. 33: 89–95, https://doi.org/10.1016/0013-4694(72)90028-4.Suche in Google Scholar PubMed

Sterman, M.B., Macdonald, L.R., and Stone, R.K. (1974). Biofeedback training of the sensorimotor electroencephalogram rhythm in man: effects on epilepsy. Epilepsia 15: 395–416, https://doi.org/10.1111/j.1528-1157.1974.tb04016.x.Suche in Google Scholar PubMed

Thompson, D.E., Quitadamo, L.R., Mainardi, L., Laghari, K.U.R., Gao, S., Kindermans, P.-J., Simeral, J.D., Fazel-Rezai, R., Matteucci, M., Falk, T.H., et al.. (2014). Performance measurement for brain–computer or brain–machine interfaces: a tutorial. J. Neural. Eng. 11: 035001, https://doi.org/10.1088/1741-2560/11/3/035001.Suche in Google Scholar PubMed PubMed Central

Wessberg, J., Stambaugh, C.R., Kralik, J.D., Beck, P.D., Laubach, M., Chapin, J.K., Kim, J., Biggs, S.J., Srinivasan, M.A., and Nicolelis, M.A.L. (2000). Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408: 361–365, https://doi.org/10.1038/35042582.Suche in Google Scholar PubMed

Willett, F.R., Avansino, D.T., Hochberg, L.R., Henderson, J.M., and Shenoy, K.V. (2021). High-performance brain-to-text communication via handwriting. Nature 593: 249–254, https://doi.org/10.1038/s41586-021-03506-2.Suche in Google Scholar PubMed PubMed Central

Wodlinger, B., Downey, J.E., Tyler-Kabara, E.C., Schwartz, A.B., Boninger, M.L., and Collinger, J.L. (2015). Ten-dimensional anthropomorphic arm control in a human brain−machine interface: difficulties, solutions, and limitations. J. Neural. Eng. 12: 016011, https://doi.org/10.1088/1741-2560/12/1/016011.Suche in Google Scholar PubMed

Woeppel, K., Hughes, C., Herrera, A.J., Eles, J.R., Tyler-Kabara, E.C., Gaunt, R.A., Collinger, J.L., and Cui, X.T. (2021). Explant analysis of Utah electrode arrays implanted in human cortex for brain-computer-interfaces. Front. Bioeng. Biotechnol. 9: 759711, https://doi.org/10.3389/fbioe.2021.759711.Suche in Google Scholar PubMed PubMed Central

Received: 2023-07-18
Accepted: 2023-09-23
Published Online: 2023-10-17
Published in Print: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2023-0077/html?lang=de
Button zum nach oben scrollen