Abstract
In this systematic review, we address the status of intracortical brain-computer interfaces (iBCIs) applied to the motor cortex to improve function in patients with impaired motor ability. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 Guidelines for Systematic Reviews. Risk Of Bias In Non-randomized Studies – of Interventions (ROBINS-I) and the Effective Public Health Practice Project (EPHPP) were used to assess bias and quality. Advances in iBCIs in the last two decades demonstrated the use of iBCI to activate limbs for functional tasks, achieve neural typing for communication, and other applications. However, the inconsistency of performance metrics employed by these studies suggests the need for standardization. Each study was a pilot clinical trial consisting of 1–4, majority male (64.28 %) participants, with most trials featuring participants treated for more than 12 months (55.55 %). The systems treated patients with various conditions: amyotrophic lateral sclerosis, stroke, spinocerebellar degeneration without cerebellar involvement, and spinal cord injury. All participants presented with tetraplegia at implantation and were implanted with microelectrode arrays via pneumatic insertion, with nearly all electrode locations solely at the precentral gyrus of the motor cortex (88.88 %). The development of iBCI devices using neural signals from the motor cortex to improve motor-impaired patients has enhanced the ability of these systems to return ability to their users. However, many milestones remain before these devices can prove their feasibility for recovery. This review summarizes the achievements and shortfalls of these systems and their respective trials.
Acknowledgments
Special thanks to Justin Campbell for his insight, edits, and advice.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. The CRediT author statements are described below for the author contributions in this template. Matthew W Holt: Conceptualization, Methodology, Project Administration, Writing – Original Draft, Formal Analysis, Validation, Investigation Eric C Robinson: Investigation, Formal Analysis, Writing – Original Draft Nathan A Shlobin: Resources, Methodology, Investigation, Validation Jacob T Hanson: Writing – Original Draft Ismail Bozkurt: Supervision, Conceptualization, Writing – Original Draft, Resources, Methodology, Validation, Writing – review and editing.
-
Competing interests: The author(s) state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
Ajiboye, A.B., Willett, F.R., Young, D.R., Memberg, W.D., Murphy, B.A., Miller, J.P., Walter, B.L., Sweet, J.A., Hoyen, H.A., Keith, M.W., et al.. (2017). Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 389: 1821–1830, https://doi.org/10.1016/s0140-6736(17)30601-3.Suche in Google Scholar PubMed PubMed Central
Annetta, N.V., Zhang, M., Mysiw, W.J., Rezai, A.R., Sharma, G., Friend, J., Schimmoeller, A., Buck, V.S., Friedenberg, D.A., Bouton, C.E., et al.. (2019). A high definition noninvasive neuromuscular electrical stimulation system for cortical control of combinatorial rotary hand movements in a human with tetraplegia. IEEE Trans. Biomed. Eng. 66: 910–919, https://doi.org/10.1109/tbme.2018.2864104.Suche in Google Scholar
Bacher, D., Jarosiewicz, B., Masse, N.Y., Stavisky, S.D., Simeral, J.D., Newell, K., Oakley, E.M., Cash, S.S., Friehs, G., and Hochberg, L.R. (2015). Neural point-and-click communication by a person with incomplete locked-in syndrome. Neurorehabilitation Neural Repair 29: 462–471, https://doi.org/10.1177/1545968314554624.Suche in Google Scholar PubMed PubMed Central
Bockbrader, M., Annetta, N., Friedenberg, D., Schwemmer, M., Skomrock, N., Colachis, S., Zhang, M., Bouton, C., Rezai, A., Sharma, G., et al.. (2019). Clinically significant gains in skillful grasp coordination by an individual with tetraplegia using an implanted brain-computer interface with forearm transcutaneous muscle stimulation. Arch. Phys. Med. Rehabil. 100: 1201–1217, https://doi.org/10.1016/j.apmr.2018.07.445.Suche in Google Scholar PubMed
Bouton, C.E., Shaikhouni, A., Annetta, N.V., Bockbrader, M.A., Friedenberg, D.A., Nielson, D.M., Sharma, G., Sederberg, P.B., Glenn, B.C., Mysiw, W.J., et al.. (2016). Restoring cortical control of functional movement in a human with quadriplegia. Nature 533: 247–250, https://doi.org/10.1038/nature17435.Suche in Google Scholar PubMed
Brandman, D.M., Hosman, T., Saab, J., Burkhart, M.C., Shanahan, B.E., Ciancibello, J.G., Sarma, A.A., Milstein, D.J., Vargas-Irwin, C.E., Franco, B., et al.. (2018). Rapid calibration of an intracortical brain–computer interface for people with tetraplegia. J. Neural. Eng. 15: 026007, https://doi.org/10.1088/1741-2552/aa9ee7.Suche in Google Scholar PubMed PubMed Central
Buzsàki, G., Bickford, R.G., Ryan, L.J., Young, S., Prohaska, O., Mandel, R.J., and Gage, F.H. (1989). Multisite recording of brain field potentials and unit activity in freely moving rats. J. Neurosci. Methods 28: 209–217, https://doi.org/10.1016/0165-0270(89)90038-1.Suche in Google Scholar PubMed
Colachis, S.C., Bockbrader, M.A., Zhang, M., Friedenberg, D.A., Annetta, N.V., Schwemmer, M.A., Skomrock, N.D., Mysiw, W.J., Rezai, A.R., Bresler, H.S., et al.. (2018). Dexterous control of seven functional hand movements using cortically-controlled transcutaneous muscle stimulation in a person with tetraplegia. Front. Neurosci. 12: 208, https://doi.org/10.3389/fnins.2018.00208.Suche in Google Scholar PubMed PubMed Central
Collinger, J.L., Gaunt, R.A., and Schwartz, A.B. (2018). Progress towards restoring upper limb movement and sensation through intracortical brain-computer interfaces. Curr. Opin. Biomed. Eng. 8: 84–92, https://doi.org/10.1016/j.cobme.2018.11.005.Suche in Google Scholar
Collinger, J.L., Wodlinger, B., Downey, J.E., Wang, W., Tyler-Kabara, E.C., Weber, D.J., McMorland, A.J., Velliste, M., Boninger, M.L., and Schwartz, A.B. (2013). High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381: 557–564, https://doi.org/10.1016/s0140-6736(12)61816-9.Suche in Google Scholar
Downey, J.E., Brane, L., Gaunt, R.A., Tyler-Kabara, E.C., Boninger, M.L., and Collinger, J.L. (2017). Motor cortical activity changes during neuroprosthetic-controlled object interaction. Sci. Rep. 7: 16947, https://doi.org/10.1038/s41598-017-17222-3.Suche in Google Scholar PubMed PubMed Central
Downey, J.E., Weiss, J.M., Flesher, S.N., Thumser, Z.C., Marasco, P.D., Boninger, M.L., Gaunt, R.A., and Collinger, J.L. (2018). Implicit grasp force representation in human motor cortical recordings. Front. Neurosci. 12: 801, https://doi.org/10.3389/fnins.2018.00801.Suche in Google Scholar PubMed PubMed Central
Downey, J.E., Weiss, J.M., Muelling, K., Venkatraman, A., Valois, J.-S., Hebert, M., Bagnell, J.A., Schwartz, A.B., and Collinger, J.L. (2016). Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping. J. NeuroEng. Rehabil. 13: 28, https://doi.org/10.1186/s12984-016-0134-9.Suche in Google Scholar PubMed PubMed Central
Fatima, N., Shuaib, A., and Saqqur, M. (2020). Intra-cortical brain-machine interfaces for controlling upper-limb powered muscle and robotic systems in spinal cord injury. Clin. Neurol. Neurosurg. 196: 106069, https://doi.org/10.1016/j.clineuro.2020.106069.Suche in Google Scholar PubMed
Fitzsimmons, N.A. (2009). Extracting kinematic parameters for monkey bipedal walking from cortical neuronal ensemble activity. Front. Integr. Neurosci. 3: 1–19, https://doi.org/10.3389/neuro.07.003.2009.Suche in Google Scholar PubMed PubMed Central
Flesher, S.N., Downey, J.E., Weiss, J.M., Hughes, C.L., Herrera, A.J., Tyler-Kabara, E.C., Boninger, M.L., Collinger, J.L., and Gaunt, R.A. (2021). A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 372: 831–836, https://doi.org/10.1126/science.abd0380.Suche in Google Scholar PubMed PubMed Central
Frank, K. (1971). Use of neural signals to control external device. Neurosci. Res. Prog. Bull. 9: 113–118.Suche in Google Scholar
Friedenberg, D.A., Schwemmer, M.A., Landgraf, A.J., Annetta, N.V., Bockbrader, M.A., Bouton, C.E., Zhang, M., Rezai, A.R., Mysiw, W.J., Bresler, H.S., et al.. (2017). Neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human. Sci. Rep. 7: 8386, https://doi.org/10.1038/s41598-017-08120-9.Suche in Google Scholar PubMed PubMed Central
Gilja, V., Pandarinath, C., Blabe, C.H., Nuyujukian, P., Simeral, J.D., Sarma, A.A., Sorice, B.L., Perge, J.A., Jarosiewicz, B., Hochberg, L.R., et al.. (2015). Clinical translation of a high-performance neural prosthesis. Nat. Med. 21: 1142–1145, https://doi.org/10.1038/nm.3953.Suche in Google Scholar PubMed PubMed Central
Hochberg, L.R., Bacher, D., Jarosiewicz, B., Masse, N.Y., Simeral, J.D., Vogel, J., Haddadin, S., Liu, J., Cash, S.S., Van Der Smagt, P., et al.. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485: 372–375, https://doi.org/10.1038/nature11076.Suche in Google Scholar PubMed PubMed Central
Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., Branner, A., Chen, D., Penn, R.D., and Donoghue, J.P. (2006). Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442: 164–171, https://doi.org/10.1038/nature04970.Suche in Google Scholar PubMed
Jackson, N. and Waters, E. (2005). Criteria for the systematic review of health promotion and public health interventions. Health Promot. Int. 20: 367–374, https://doi.org/10.1093/heapro/dai022.Suche in Google Scholar PubMed
Jarosiewicz, B., Masse, N.Y., Bacher, D., Cash, S.S., Eskandar, E., Friehs, G., Donoghue, J.P., and Hochberg, L.R. (2013). Advantages of closed-loop calibration in intracortical brain–computer interfaces for people with tetraplegia. J. Neural. Eng. 10: 046012, https://doi.org/10.1088/1741-2560/10/4/046012.Suche in Google Scholar PubMed PubMed Central
Jarosiewicz, B., Sarma, A.A., Bacher, D., Masse, N.Y., Simeral, J.D., Sorice, B., Oakley, E.M., Blabe, C., Pandarinath, C., Gilja, V., et al. (2015). Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface. Sci. Transl. Med. 313: 1–10, https://doi.org/10.1126/scitranslmed.aac7328.Suche in Google Scholar PubMed PubMed Central
Lebedev, M.A., Carmena, J.M., O’Doherty, J.E., Zacksenhouse, M., Henriquez, C.S., Principe, J.C., and Nicolelis, M.A.L. (2005). Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface. J. Neurosci. 25: 4681–4693, https://doi.org/10.1523/jneurosci.4088-04.2005.Suche in Google Scholar
Lebedev, M.A. and Nicolelis, M.A.L. (2017). Brain-machine interfaces: from basic science to neuroprostheses and neurorehabilitation. Physiol. Rev. 97: 767–837, https://doi.org/10.1152/physrev.00027.2016.Suche in Google Scholar PubMed
Moses, D.A., Metzger, S.L., Liu, J.R., Anumanchipalli, G.K., Makin, J.G., Sun, P.F., Chartier, J., Dougherty, M.E., Liu, P.M., Abrams, G.M., et al.. (2021). Neuroprosthesis for decoding speech in a paralyzed person with anarthria. N. Engl. J. Med. 385: 217–227, https://doi.org/10.1056/nejmoa2027540.Suche in Google Scholar PubMed PubMed Central
Nicolelis, M.A., Baccala, L.A., Lin, R.C., and Chapin, J.K. (1995). Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. Science 268: 1353–1358, https://doi.org/10.1126/science.7761855.Suche in Google Scholar PubMed
Nicolelis, M.A.L., Ghazanfar, A.A., Stambaugh, C.R., Oliveira, L.M.O., Laubach, M., Chapin, J.K., Nelson, R.J., and Kaas, J.H. (1998). Simultaneous encoding of tactile information by three primate cortical areas. Nat. Neurosci. 1: 621–630, https://doi.org/10.1038/2855.Suche in Google Scholar PubMed
Nicolelis, M.A., Lin, R.C., Woodward, D.J., and Chapin, J.K. (1993a). Dynamic and distributed properties of many-neuron ensembles in the ventral posterior medial thalamus of awake rats. Proc. Natl. Acad. Sci. U.S.A. 90: 2212–2216, https://doi.org/10.1073/pnas.90.6.2212.Suche in Google Scholar PubMed PubMed Central
Nicolelis, M.A., Lin, R.C., Woodward, D.J., and Chapin, J.K. (1993b). Induction of immediate spatiotemporal changes in thalamic networks by peripheral block of ascending cutaneous information. Nature 361: 533–536, https://doi.org/10.1038/361533a0.Suche in Google Scholar PubMed
Nowlis, D.P. and Kamiya, J. (1970). The control of electroencephalographic alpha rhythms through auditory feedback and the associated mental activity. Psychophysiology 6: 476–484, https://doi.org/10.1111/j.1469-8986.1970.tb01756.x.Suche in Google Scholar PubMed
Nowlis, D.P. and Wortz, E.C. (1973). Control of the ratio of midline parietal to midline frontal EEG alpha rhythms through auditory feedback. Percept. Mot. Skills 37: 815–824, https://doi.org/10.1177/003151257303700329.Suche in Google Scholar PubMed
Nuyujukian, P., Albites Sanabria, J., Saab, J., Pandarinath, C., Jarosiewicz, B., Blabe, C.H., Franco, B., Mernoff, S.T., Eskandar, E.N., Simeral, J.D., et al.. (2018). Cortical control of a tablet computer by people with paralysis. PLoS One 13: e0204566, https://doi.org/10.1371/journal.pone.0204566.Suche in Google Scholar PubMed PubMed Central
O’Doherty, J.E., Lebedev, M.A., Ifft, P.J., Zhuang, K.Z., Shokur, S., Bleuler, H., and Nicolelis, M.A.L. (2011). Active tactile exploration using a brain-machine-brain interface. Nature 479: 228–231, https://doi.org/10.1038/nature10489.Suche in Google Scholar PubMed PubMed Central
Ouzzani, M., Hammady, H., Fedorowicz, Z., and Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 5: 210, https://doi.org/10.1186/s13643-016-0384-4.Suche in Google Scholar PubMed PubMed Central
Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Br. Med. J. 372: n71, https://doi.org/10.1136/bmj.n71.Suche in Google Scholar PubMed PubMed Central
Pandarinath, C., Nuyujukian, P., Blabe, C.H., Sorice, B.L., Saab, J., Willett, F.R., Hochberg, L.R., Shenoy, K.V., and Henderson, J.M. (2017). High performance communication by people with paralysis using an intracortical brain-computer interface. ELife 6: e18554, https://doi.org/10.7554/elife.18554.Suche in Google Scholar
Patil, P.G., Carmena, J.M., Nicolelis, M.A.L., and Turner, D.A. (2004). Ensemble recordings of human subcortical neurons as a source of motor control signals for a brain-machine interface. Neurosurgery 55: 27–35; discussion 35–38, https://doi.org/10.1227/01.neu.0000126872.23715.e5.Suche in Google Scholar
Quick, K.M., Weiss, J.M., Clemente, F., Gaunt, R.A., and Collinger, J.L. (2020). Intracortical microstimulation feedback improves grasp force accuracy in a human using a brain-computer interface. In: 2020 42nd annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 3355–3358.10.1109/EMBC44109.2020.9175926Suche in Google Scholar PubMed PubMed Central
Schmidt, E.M. (1993). Cortical control of robotic devices and neuromuscular stimulators. In: Neurobionics. Elsevier, Amsterdam, pp. 289–295.10.1016/B978-0-444-89958-3.50020-6Suche in Google Scholar
Sharma, G., Friedenberg, D.A., Annetta, N., Glenn, B., Bockbrader, M., Majstorovic, C., Domas, S., Mysiw, W.J., Rezai, A., and Bouton, C. (2016). Using an artificial neural bypass to restore cortical control of rhythmic movements in a human with quadriplegia. Sci. Rep. 6: 33807, https://doi.org/10.1038/srep33807.Suche in Google Scholar PubMed PubMed Central
Shih, J.J., Krusienski, D.J., and Wolpaw, J.R. (2012). Brain-computer interfaces in medicine. Mayo Clin. Proc. 87: 268–279, https://doi.org/10.1016/j.mayocp.2011.12.008.Suche in Google Scholar PubMed PubMed Central
Simeral, J.D., Hosman, T., Saab, J., Flesher, S.N., Vilela, M., Franco, B., Kelemen, J.N., Brandman, D.M., Ciancibello, J.G., Rezaii, P.G., et al.. (2021). Home use of a percutaneous wireless intracortical brain-computer interface by individuals with tetraplegia. IEEE Trans. Biomed. Eng. 68: 2313–2325, https://doi.org/10.1109/tbme.2021.3069119.Suche in Google Scholar
Stavisky, S.D., Willett, F.R., Wilson, G.H., Murphy, B.A., Rezaii, P., Avansino, D.T., Memberg, W.D., Miller, J.P., Kirsch, R.F., Hochberg, L.R., et al.. (2019). Neural ensemble dynamics in dorsal motor cortex during speech in people with paralysis. eLife 8: e46015, https://doi.org/10.7554/elife.46015.Suche in Google Scholar PubMed PubMed Central
Sterman, M.B. (1973). Neurophysiologic and clinical studies of sensorimotor EEG biofeedback training: some effects on epilepsy. Semin. Psychiatr. 5: 507–525.Suche in Google Scholar
Sterman, M.B. (1981). EEG biofeedback: physiological behavior modification. Neurosci. Biobehav. Rev. 5: 405–412, https://doi.org/10.1016/0149-7634(81)90036-1.Suche in Google Scholar PubMed
Sterman, M.B. and Friar, L. (1972). Suppression of seizures in an epileptic following sensorimotor EEG feedback training. Electroencephalogr. Clin. Neurophysiol. 33: 89–95, https://doi.org/10.1016/0013-4694(72)90028-4.Suche in Google Scholar PubMed
Sterman, M.B., Macdonald, L.R., and Stone, R.K. (1974). Biofeedback training of the sensorimotor electroencephalogram rhythm in man: effects on epilepsy. Epilepsia 15: 395–416, https://doi.org/10.1111/j.1528-1157.1974.tb04016.x.Suche in Google Scholar PubMed
Thompson, D.E., Quitadamo, L.R., Mainardi, L., Laghari, K.U.R., Gao, S., Kindermans, P.-J., Simeral, J.D., Fazel-Rezai, R., Matteucci, M., Falk, T.H., et al.. (2014). Performance measurement for brain–computer or brain–machine interfaces: a tutorial. J. Neural. Eng. 11: 035001, https://doi.org/10.1088/1741-2560/11/3/035001.Suche in Google Scholar PubMed PubMed Central
Wessberg, J., Stambaugh, C.R., Kralik, J.D., Beck, P.D., Laubach, M., Chapin, J.K., Kim, J., Biggs, S.J., Srinivasan, M.A., and Nicolelis, M.A.L. (2000). Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408: 361–365, https://doi.org/10.1038/35042582.Suche in Google Scholar PubMed
Willett, F.R., Avansino, D.T., Hochberg, L.R., Henderson, J.M., and Shenoy, K.V. (2021). High-performance brain-to-text communication via handwriting. Nature 593: 249–254, https://doi.org/10.1038/s41586-021-03506-2.Suche in Google Scholar PubMed PubMed Central
Wodlinger, B., Downey, J.E., Tyler-Kabara, E.C., Schwartz, A.B., Boninger, M.L., and Collinger, J.L. (2015). Ten-dimensional anthropomorphic arm control in a human brain−machine interface: difficulties, solutions, and limitations. J. Neural. Eng. 12: 016011, https://doi.org/10.1088/1741-2560/12/1/016011.Suche in Google Scholar PubMed
Woeppel, K., Hughes, C., Herrera, A.J., Eles, J.R., Tyler-Kabara, E.C., Gaunt, R.A., Collinger, J.L., and Cui, X.T. (2021). Explant analysis of Utah electrode arrays implanted in human cortex for brain-computer-interfaces. Front. Bioeng. Biotechnol. 9: 759711, https://doi.org/10.3389/fbioe.2021.759711.Suche in Google Scholar PubMed PubMed Central
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A review of neuroimaging-based data-driven approach for Alzheimer’s disease heterogeneity analysis
- Automated diagnosis of autism with artificial intelligence: State of the art
- “Brain–breath” interactions: respiration-timing–dependent impact on functional brain networks and beyond
- In vivo C6 glioma models: an update and a guide toward a more effective preclinical evaluation of potential anti-glioblastoma drugs
- Subjective, behavioral and neurobiological effects of cannabis and cannabinoids in social anxiety
- Intracortical brain-computer interfaces for improved motor function: a systematic review
- Adult ADHD: it is old and new at the same time – what is it?
Artikel in diesem Heft
- Frontmatter
- A review of neuroimaging-based data-driven approach for Alzheimer’s disease heterogeneity analysis
- Automated diagnosis of autism with artificial intelligence: State of the art
- “Brain–breath” interactions: respiration-timing–dependent impact on functional brain networks and beyond
- In vivo C6 glioma models: an update and a guide toward a more effective preclinical evaluation of potential anti-glioblastoma drugs
- Subjective, behavioral and neurobiological effects of cannabis and cannabinoids in social anxiety
- Intracortical brain-computer interfaces for improved motor function: a systematic review
- Adult ADHD: it is old and new at the same time – what is it?