Abstract
There has been tremendous progress in artificial neural networks (ANNs) over the past decade; however, the gap between ANNs and the biological brain as a learning device remains large. With the goal of closing this gap, this paper reviews learning mechanisms in the brain by focusing on three important issues in ANN research: efficiency, continuity, and generalization. We first discuss the method by which the brain utilizes a variety of self-organizing mechanisms to maximize learning efficiency, with a focus on the role of spontaneous activity of the brain in shaping synaptic connections to facilitate spatiotemporal learning and numerical processing. Then, we examined the neuronal mechanisms that enable lifelong continual learning, with a focus on memory replay during sleep and its implementation in brain-inspired ANNs. Finally, we explored the method by which the brain generalizes learned knowledge in new situations, particularly from the mathematical generalization perspective of topology. Besides a systematic comparison in learning mechanisms between the brain and ANNs, we propose “Mental Schema 2.0,” a new computational property underlying the brain’s unique learning ability that can be implemented in ANNs.
Funding source: World Premier International Research Center Initiative (WPI), MEXT, Japan
Acknowledgments
This work was supported by World Premier International Research Center Initiative (WPI), MEXT, Japan. The funding source had no contribution to the content of the manuscript. We would like to express our deepest gratitude to the lab members who provided meaningful feedback and to our families who support our search activities.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by the World Premier International Research Center Initiative (WPI), MEXT, Japan.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Adamantidis, A.R., Gutierrez Herrera, C., and Gent, T.C. (2019). Oscillating circuitries in the sleeping brain. Nat. Rev. Neurosci. 20: 746–762, https://doi.org/10.1038/s41583-019-0223-4.Search in Google Scholar PubMed
Ambrose, R.E., Pfeiffer, B.E., and Foster, D.J. (2016). Reverse replay of hippocampal place cells is uniquely modulated by changing reward. Neuron 91: 1124–1136, https://doi.org/10.1016/j.neuron.2016.07.047.Search in Google Scholar PubMed PubMed Central
Asok, A., Leroy, F., Rayman, J.B., and Kandel, E.R. (2019). Molecular mechanisms of the memory trace. Trends Neurosci. 42: 14–22, https://doi.org/10.1016/j.tins.2018.10.005.Search in Google Scholar PubMed PubMed Central
Babichev, A. and Dabaghian, Y.A. (2018). Topological schemas of memory spaces. Front. Comput. Neurosci. 12: 27, https://doi.org/10.3389/fncom.2018.00027.Search in Google Scholar PubMed PubMed Central
Babichev, A., Morozov, D., and Dabaghian, Y. (2019). Replays of spatial memories suppress topological fluctuations in cognitive map. Netw. Neurosci. 3: 707–724, https://doi.org/10.1162/netn_a_00076.Search in Google Scholar PubMed PubMed Central
Bahtiyar, S., Gulmez Karaca, K., Henckens, M.J.A.G., and Roozendaal, B. (2020). Norepinephrine and glucocorticoid effects on the brain mechanisms underlying memory accuracy and generalization. Mol. Cell. Neurosci. 108: 103537, https://doi.org/10.1016/j.mcn.2020.103537.Search in Google Scholar PubMed
Baraduc, P., Duhamel, J.R., and Wirth, S. (2019). Schema cells in the macaque hippocampus. Science 363: 635–639, https://doi.org/10.1126/science.aav5404.Search in Google Scholar PubMed
Baram, A.B., Muller, T.H., Nili, H., Garvert, M.M., and Behrens, T.E.J. (2021). Entorhinal and ventromedial prefrontal cortices abstract and generalize the structure of reinforcement learning problems. Neuron 109: 713.e7–723.e7, https://doi.org/10.1016/j.neuron.2020.11.024.Search in Google Scholar PubMed PubMed Central
Bassett, D.S. and Sporns, O. (2017). Network neuroscience. Nat. Neurosci. 20: 353–364, https://doi.org/10.1038/nn.4502.Search in Google Scholar PubMed PubMed Central
Bassett, D.S., Xia, C.H., and Satterthwaite, T.D. (2018). Understanding the emergence of neuropsychiatric disorders with network neuroscience. Biol. Psychiatr. Cognit. Neurosci. Neuroimaging 3: 742–753, https://doi.org/10.1016/j.bpsc.2018.03.015.Search in Google Scholar PubMed PubMed Central
Behrens, T.E.J., Muller, T.H., Whittington, J.C.R., Mark, S., Baram, A.B., Stachenfeld, K.L., and Kurth-Nelson, Z. (2018). What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 100: 490–509, https://doi.org/10.1016/j.neuron.2018.10.002.Search in Google Scholar PubMed
Bhattarai, B., Lee, J.W., and Jung, M.W. (2020). Distinct effects of reward and navigation history on hippocampal forward and reverse replays. Proc. Natl. Acad. Sci. U. S. A. 117: 689–697, https://doi.org/10.1073/pnas.1912533117.Search in Google Scholar PubMed PubMed Central
Bongard, S. and Nieder, A. (2010). Basic mathematical rules are encoded by primate prefrontal cortex neurons. Proc. Natl. Acad. Sci. U. S. A. 107: 2277–2282, https://doi.org/10.1073/pnas.0909180107.Search in Google Scholar PubMed PubMed Central
Bonifazi, P., Goldin, M., Picardo, M.A., Jorquera, I., Cattani, A., Bianconi, G., Represa, A., Ben-Ari, Y., and Cossart, R. (2009). GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326: 1419–1424, https://doi.org/10.1126/science.1175509.Search in Google Scholar PubMed
Bowman, C.R. and Zeithamova, D. (2018). Abstract memory representations in the ventromedial prefrontal cortex and hippocampus support concept generalization. J. Neurosci. 38: 2605–2614, https://doi.org/10.1523/jneurosci.2811-17.2018.Search in Google Scholar
Broadbent, N.J., Squire, L.R., and Clark, R.E. (2004). Spatial memory, recognition memory, and the hippocampus. Proc. Natl. Acad. Sci. U. S. A. 101: 14515–14520, https://doi.org/10.1073/pnas.0406344101.Search in Google Scholar PubMed PubMed Central
Brunel, N., Hakim, V., Isope, P., Nadal, J.P., and Barbour, B. (2004). Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell. Neuron 43: 745–757, https://doi.org/10.1016/s0896-6273(04)00528-8.Search in Google Scholar
Buch, E.R., Claudino, L., Quentin, R., Bönstrup, M., and Cohen, L.G. (2021). Consolidation of human skill linked to waking hippocampo-neocortical replay. Cell Rep. 35: 109193, https://doi.org/10.1016/j.celrep.2021.109193.Search in Google Scholar PubMed PubMed Central
Bui, K., Park, F., Zhang, S., Qi, Y., and Xin, J. (2021). Structured sparsity of convolutional neural networks via nonconvex sparse group regularization. Front. Appl. Math. Stat. 6: 62, https://doi.org/10.3389/fams.2020.529564.Search in Google Scholar
Burak, Y. and Fiete, I.R. (2009). Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 5: e1000291, https://doi.org/10.1371/journal.pcbi.1000291.Search in Google Scholar PubMed PubMed Central
Burgess, N. (2008). Grid cells and theta as oscillatory interference: theory and predictions. Hippocampus 18: 1157–1174, https://doi.org/10.1002/hipo.20518.Search in Google Scholar PubMed PubMed Central
Burgess, N. and O’Keefe, J. (2011). Models of place and grid cell firing and theta rhythmicity. Curr. Opin. Neurobiol. 21: 734–744, https://doi.org/10.1016/j.conb.2011.07.002.Search in Google Scholar PubMed PubMed Central
Buzsáki, G. (2015). Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25: 1073–1188, https://doi.org/10.1002/hipo.22488.Search in Google Scholar PubMed PubMed Central
Buzsáki, G. and Mizuseki, K. (2014). The log-dynamic brain: how skewed distributions affect network operations. Nat. Rev. Neurosci. 15: 264–278, https://doi.org/10.1038/nrn3687.Search in Google Scholar PubMed PubMed Central
Buzsáki, G. and Tingley, D. (2018). Space and time: the hippocampus as a sequence generator. Trends Cognit. Sci. 22: 853–869, https://doi.org/10.1016/j.tics.2018.07.006.Search in Google Scholar PubMed PubMed Central
Buzsáki, G., Leung, L.W., and Vanderwolf, C.H. (1983). Cellular bases of hippocampal EEG in the behaving rat. Brain Res. 287: 139–171, https://doi.org/10.1016/0165-0173(83)90037-1.Search in Google Scholar PubMed
Cang, Z. and Wei, G.W. (2017). TopologyNet: topology based deep convolutional and multi-task neural networks for biomolecular property predictions. PLoS Comput. Biol. 13: e1005690, https://doi.org/10.1371/journal.pcbi.1005690.Search in Google Scholar PubMed PubMed Central
Carlsson, G. (2009). Topology and data. Bull. Am. Math. Soc. 46: 255–308, https://doi.org/10.1090/s0273-0979-09-01249-x.Search in Google Scholar
Chaudhuri, R., Gerçek, B., Pandey, B., Peyrache, A., and Fiete, I. (2019). The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. Nat. Neurosci. 22: 1512–1520, https://doi.org/10.1038/s41593-019-0460-x.Search in Google Scholar PubMed
Chen, G., Zou, X., Watanabe, H., van Deursen, J.M., and Shen, J. (2010). CREB binding protein is required for both short-term and long-term memory formation. J. Neurosci. 30: 13066–13077, https://doi.org/10.1523/jneurosci.2378-10.2010.Search in Google Scholar PubMed PubMed Central
Chen, Z., Gomperts, S.N., Yamamoto, J., and Wilson, M.A. (2014). Neural representation of spatial topology in the rodent hippocampus. Neural Comput. 26: 1–39, https://doi.org/10.1162/neco_a_00538.Search in Google Scholar PubMed PubMed Central
Chen, Z., Kloosterman, F., Brown, E.N., and Wilson, M.A. (2012). Uncovering spatial topology represented by rat hippocampal population neuronal codes. J. Comput. Neurosci. 33: 227–255, https://doi.org/10.1007/s10827-012-0384-x.Search in Google Scholar PubMed PubMed Central
Chen, Z. and Liu, B. (2018). Lifelong machine learning. In: Synthesis Lectures on artificial Intelligence and machine learning, 2nd ed. Cham: Springer, pp. 1–207.10.2200/S00832ED1V01Y201802AIM037Search in Google Scholar
Chung, M.K., Lee, H., DiChristofano, A., Ombao, H., and Solo, V. (2019). Exact topological inference of the resting-state brain networks in twins. Netw. Neurosci. 3: 674–694, https://doi.org/10.1162/netn_a_00091.Search in Google Scholar PubMed PubMed Central
Colbran, R.J. (2015). Thematic minireview series: molecular mechanisms of synaptic plasticity. J. Biol. Chem. 290: 28594–28595, https://doi.org/10.1074/jbc.r115.696468.Search in Google Scholar PubMed PubMed Central
Cossell, L., Iacaruso, M.F., Muir, D.R., Houlton, R., Sader, E.N., Ko, H., Hofer, S.B., and Mrsic-Flogel, T.D. (2015). Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518: 399–403, https://doi.org/10.1038/nature14182.Search in Google Scholar PubMed PubMed Central
Curtis, A., Silver, T., Tenenbaum, J.B., Lozano-Pérez, T., and Kaelbling, L. (2022). Discovering state and action abstractions for generalized task and motion planning. In: The 36th AAAI conference on artificial intelligence (AAAI-22), AAII, Vol. 36, pp. 5377–5384.10.1609/aaai.v36i5.20475Search in Google Scholar
Curto, C. (2017). What can topology tell us about the neural code? Bull. Am. Math. Soc. 54: 63–78, https://doi.org/10.1090/bull/1554.Search in Google Scholar
Dabaghian, Y. (2020). From topological analyses to functional modeling: the case of hippocampus. Front. Comput. Neurosci. 14: 593166, https://doi.org/10.3389/fncom.2020.593166.Search in Google Scholar PubMed PubMed Central
Dabaghian, Y., Brandt, V.L., and Frank, L.M. (2014). Reconceiving the hippocampal map as a topological template. Elife 3: e03476, https://doi.org/10.7554/elife.03476.Search in Google Scholar PubMed PubMed Central
Dabaghian, Y., Mémoli, F., Frank, L., and Carlsson, G. (2012). A topological paradigm for hippocampal spatial map formation using persistent homology. PLoS Comput. Biol. 8: e1002581, https://doi.org/10.1371/journal.pcbi.1002581.Search in Google Scholar PubMed PubMed Central
Danjo, T., Toyoizumi, T., and Fujisawa, S. (2018). Spatial representations of self and other in the hippocampus. Science 359: 213–218, https://doi.org/10.1126/science.aao3898.Search in Google Scholar PubMed
Dehaene-Lambertz, G. and Spelke, E.S. (2015). The infancy of the human brain. Neuron 88: 93–109, https://doi.org/10.1016/j.neuron.2015.09.026.Search in Google Scholar PubMed
DiTullio, R.W. and Balasubramanian, V. (2021). Dynamical self-organization and efficient representation of space by grid cells. Curr. Opin. Neurobiol. 70: 206–213, https://doi.org/10.1016/j.conb.2021.11.007.Search in Google Scholar PubMed PubMed Central
Dragoi, G. and Buzsáki, G. (2006). Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50: 145–157, https://doi.org/10.1016/j.neuron.2006.02.023.Search in Google Scholar PubMed
Dragoi, G. and Tonegawa, S. (2011). Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469: 397–401, https://doi.org/10.1038/nature09633.Search in Google Scholar PubMed PubMed Central
Edwards, L.A., Wagner, J.B., Simon, C.E. and Hyde, D.C. (2016). Functional brain organization for number processing in pre-verbal infants. Dev. Sci. 19: 757–769, https://doi.org/10.1111/desc.12333.Search in Google Scholar PubMed
Ellis, C.T., Lesnick, M., Henselman-Petrusek, G., Keller, B., and Cohen, J.D. (2019). Feasibility of topological data analysis for event-related fMRI. Netw. Neurosci. 3: 695–706, https://doi.org/10.1162/netn_a_00095.Search in Google Scholar PubMed PubMed Central
Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., and Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature 542: 115–118, https://doi.org/10.1038/nature21056.Search in Google Scholar PubMed PubMed Central
Fanselow, M. and Poulos, A.M. (2005). The neuroscience of mammalian associative learning. Annu. Rev. Psychol. 56: 207–234, https://doi.org/10.1146/annurev.psych.56.091103.070213.Search in Google Scholar PubMed
FeldmanHall, O., Montez, D.F., Phelps, E.A., Davachi, L., and Murty, V.P. (2021). Hippocampus guides adaptive learning during dynamic social interactions. J. Neurosci. 41: 1340–1348, https://doi.org/10.1523/jneurosci.0873-20.2020.Search in Google Scholar PubMed PubMed Central
Feldmeyer, D., Egger, V., Lübke, J., and Sakmann, B. (1999). Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single “barrel” of developing rat somatosensory cortex. J. Physiol. 521: 169–190, https://doi.org/10.1111/j.1469-7793.1999.00169.x.Search in Google Scholar PubMed PubMed Central
Fiete, I.R., Burak, Y., and Brookings, T. (2008). What grid cells convey about rat location. J. Neurosci. 28: 6858–6871, https://doi.org/10.1523/jneurosci.5684-07.2008.Search in Google Scholar
Flesch, T., Balaguer, J., Dekker, R., Nili, H., and Summerfield, C. (2018). Comparing continual task learning in minds and machines. Proc. Natl. Acad. Sci. U. S. A. 115: E10313–E10322, https://doi.org/10.1073/pnas.1800755115.Search in Google Scholar PubMed PubMed Central
Foster, D.J. and Wilson, M.A. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440: 680–683, https://doi.org/10.1038/nature04587.Search in Google Scholar PubMed
Foster, D.J. and Wilson, M.A. (2007). Hippocampal theta sequences. Hippocampus 17: 1093–1099, https://doi.org/10.1002/hipo.20345.Search in Google Scholar PubMed
Galland, B.C., Taylor, B.J., Elder, D.E., and Herbison, P. (2012). Normal sleep patterns in infants and children: a systematic review of observational studies. Sleep Med. Rev. 16: 213–222, https://doi.org/10.1016/j.smrv.2011.06.001.Search in Google Scholar PubMed
Gardner, R.J., Hermansen, E., Pachitariu, M., Burak, Y., Baas, N.A., Dunn, B.A., Moser, M.B., and Moser, E.I. (2022). Toroidal topology of population activity in grid cells. Nature 602: 123–128, https://doi.org/10.1038/s41586-021-04268-7.Search in Google Scholar PubMed PubMed Central
Gauthier, J.L. and Tank, D.W. (2018). A dedicated population for reward coding in the hippocampus. Neuron 99: 179.e7–193.e7, https://doi.org/10.1016/j.neuron.2018.06.008.Search in Google Scholar PubMed PubMed Central
Ge, X., Zhang, K., Gribizis, A., Hamodi, A.S., Sabino, A.M., and Crair, M.C. (2021). Retinal waves prime visual motion detection by simulating future optic flow. Science 373, https://doi.org/10.1126/science.abd0830.Search in Google Scholar PubMed PubMed Central
Ghrist, R. (2008). Barcodes: the persistent topology of data. Bull. Amer. Math. Soc. 45: 61–75.10.1090/S0273-0979-07-01191-3Search in Google Scholar
Gillespie, A.K., Astudillo Maya, D.A., Denovellis, E.L., Liu, D.F., Kastner, D.B., Coulter, M.E., Roumis, D.K., Eden, U.T., and Frank, L.M. (2021). Hippocampal replay reflects specific past experiences rather than a plan for subsequent choice. Neuron 109: 3149.e6–3163.e6, https://doi.org/10.1016/j.neuron.2021.07.029.Search in Google Scholar PubMed PubMed Central
Girardeau, G., Benchenane, K., Wiener, S.I., Buzsáki, G., and Zugaro, M.B. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12: 1222–1223, https://doi.org/10.1038/nn.2384.Search in Google Scholar PubMed
Girardeau, G. and Lopes-Dos-Santos, V. (2021). Brain neural patterns and the memory function of sleep. Science 374: 560–564, https://doi.org/10.1126/science.abi8370.Search in Google Scholar PubMed PubMed Central
Giusti, C., Ghrist, R., and Bassett, D.S. (2016). Two’s company, three (or more) is a simplex: algebraic-topological tools for understanding higher-order structure in neural data. J. Comput. Neurosci. 41: 1–14, https://doi.org/10.1007/s10827-016-0608-6.Search in Google Scholar PubMed PubMed Central
Giusti, C., Pastalkova, E., Curto, C., and Itskov, V. (2015). Clique topology reveals intrinsic geometric structure in neural correlations. Proc. Natl. Acad. Sci. U. S. A. 112: 13455–13460, https://doi.org/10.1073/pnas.1506407112.Search in Google Scholar PubMed PubMed Central
Golub, M.D., Sadtler, P.T., Oby, E.R., Quick, K.M., Ryu, S.I., Tyler-Kabara, E.C., Batista, A.P., Chase, S.M., and Yu, B.M. (2018). Learning by neural reassociation. Nat. Neurosci. 21: 607–616, https://doi.org/10.1038/s41593-018-0095-3.Search in Google Scholar PubMed PubMed Central
Gonzalez, C., Jiang, X., Gonzalez-Martinez, J., and Halgren, E. (2022). Human spindle variability. J. Neurosci. 42: 4517–4537, https://doi.org/10.1523/jneurosci.1786-21.2022.Search in Google Scholar
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2020). Generative adversarial networks. Commun. ACM 63: 139–144, https://doi.org/10.1145/3422622.Search in Google Scholar
Gothard, K.M., Skaggs, W.E., and Mcnaughton, B.L. (1996). Dynamics of mismatch correction in the hippocampal ensemble code for space: interaction between path integration and environmental cues. J. Neurosci. 16: 8027–8040, https://doi.org/10.1523/jneurosci.16-24-08027.1996.Search in Google Scholar PubMed PubMed Central
Gridchyn, I., Schoenenberger, P., O’Neill, J., and Csicsvari, J. (2020). Assembly-specific disruption of hippocampal replay leads to selective memory deficit. Neuron 106: 291.e6–300.e6, https://doi.org/10.1016/j.neuron.2020.01.021.Search in Google Scholar PubMed
Grosmark, A.D. and Buzsáki, G. (2016). Diversity in neural firing dynamics supports both rigid and learned hippocampal sequences. Science 351: 1440–1443, https://doi.org/10.1126/science.aad1935.Search in Google Scholar PubMed PubMed Central
Gulledge, A. and Stuart, G. (2003). Action potential initiation and propagation in layer 5 pyramidal neurons of the rat prefrontal cortex: absence of dopamine modulation. J. Neurosci. 23: 11363–11372, https://doi.org/10.1523/JNEUROSCI.23-36-11363.2003.Search in Google Scholar PubMed PubMed Central
Hadsell, R., Rao, D., Rusu, A.A. and Pascanu, R. (2020). Embracing change: continual learning in deep neural networks. Trends Cognit. Sci. 24: 1028–1040, https://doi.org/10.1016/j.tics.2020.09.004.Search in Google Scholar PubMed
Hasselmo, M.E., Giocomo, L.M., and Zilli, E.A. (2007). Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons. Hippocampus 17: 1252–1271, https://doi.org/10.1002/hipo.20374.Search in Google Scholar PubMed PubMed Central
Hatcher, A. (2001). Algebraic topology. Cambridge Univeristy Press, New York.Search in Google Scholar
Helfrich, R.F., Mander, B.A., Jagust, W.J., Knight, R.T. and Walker, M.P. (2018). Old brains come uncoupled in sleep: slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron 97: 221.e4–230.e4, https://doi.org/10.1016/j.neuron.2017.11.020.Search in Google Scholar PubMed PubMed Central
Hensel, F., Moor, M., and Rieck, B. (2021). A survey of topological machine learning methods. Front. Artif. Intell. 4: 681108, https://doi.org/10.3389/frai.2021.681108.Search in Google Scholar PubMed PubMed Central
Higgins, C., Liu, Y., Vidaurre, D., Kurth-Nelson, Z., Dolan, R., Behrens, T. and Woolrich, M. (2021). Replay bursts in humans coincide with activation of the default mode and parietal alpha networks. Neuron 109: 882.e7–893.e7, https://doi.org/10.1016/j.neuron.2020.12.007.Search in Google Scholar PubMed PubMed Central
Hofer, C., Kwitt, R., Niethammer, M., and Uhl, A. (2017). Deep learning with topological signatures. Adv. Neural Inf. Process. Syst. 30.Search in Google Scholar
Hosny, A., Parmar, C., Coroller, T.P., Grossmann, P., Zeleznik, R., Kumar, A., Bussink, J., Gillies, R.J., Mak, R.H., and Aerts, H.J.W.L. (2018). Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med. 15: e1002711, https://doi.org/10.1371/journal.pmed.1002711.Search in Google Scholar PubMed PubMed Central
Høydal, Ø.A., Skytøen, E.R., Andersson, S.O., Moser, M.B., and Moser, E.I. (2019). Object-vector coding in the medial entorhinal cortex. Nature 568: 400–404, https://doi.org/10.1038/s41586-019-1077-7.Search in Google Scholar PubMed
Huszár, R., Zhang, Y., Blockus, H., and Buzsáki, G. (2022). Preconfigured dynamics in the hippocampus are guided by embryonic birthdate and rate of neurogenesis. Nat. Neurosci. 25: 1201–1212, https://doi.org/10.1038/s41593-022-01138-x.Search in Google Scholar PubMed
Hyde, D.C., Boas, D.A., Blair, C., and Carey, S. (2010). Near-infrared spectroscopy shows right parietal specialization for number in pre-verbal infants. Neuroimage 53: 647–652, https://doi.org/10.1016/j.neuroimage.2010.06.030.Search in Google Scholar PubMed PubMed Central
Ikegaya, Y., Sasaki, T., Ishikawa, D., Honma, N., Tao, K., Takahashi, N., Minamisawa, G., Ujita, S., and Matsuki, N. (2013). Interpyramid spike transmission stabilizes the sparseness of recurrent network activity. Cerebr. Cortex 23: 293–304, https://doi.org/10.1093/cercor/bhs006.Search in Google Scholar PubMed
Ishikawa, T. and Ikegaya, Y. (2020). Locally sequential synaptic reactivation during hippocampal ripples. Sci. Adv. 6: eaay1492, https://doi.org/10.1126/sciadv.aay1492.Search in Google Scholar PubMed PubMed Central
Izard, V., Dehaene-Lambertz, G., and Dehaene, S. (2008). Distinct cerebral pathways for object identity and number in human infants. PLoS Biol. 6: e11, https://doi.org/10.1371/journal.pbio.0060011.Search in Google Scholar PubMed PubMed Central
Izard, V.R., Sann, C., Spelke, E.S., and Streri, A. (2009). Newborn infants perceive abstract numbers. Proc. Natl. Acad. Sci. U. S. A. 106: 10382–10385, https://doi.org/10.1073/pnas.0812142106.Search in Google Scholar PubMed PubMed Central
Jarrard, L.E. (1993). On the role of the hippocampus in learning and memory in the rat. Behav. Neural. Biol. 60: 9–26, https://doi.org/10.1016/0163-1047(93)90664-4.Search in Google Scholar PubMed
Jeffery, K.J., Gilbert, A., Burton, S., and Strudwick, A. (2003). Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. Hippocampus 13: 175–189, https://doi.org/10.1002/hipo.10047.Search in Google Scholar PubMed
Julian, J.B. and Doeller, C.F. (2021). Remapping and realignment in the human hippocampal formation predict context-dependent spatial behavior. Nat. Neurosci. 24: 863–872, https://doi.org/10.1038/s41593-021-00835-3.Search in Google Scholar PubMed
Jung, H., Ju, J., Jung, M., and Kim, J. (2018). Less-forgetful learning for domain expansion in deep neural networks. AAAI 32: 3358–3365, https://doi.org/10.1609/aaai.v32i1.11769.Search in Google Scholar
Kaefer, K., Nardin, M., Blahna, K., and Csicsvari, J. (2020). Replay of behavioral sequences in the medial prefrontal cortex during rule switching. Neuron 106: 154.e6–165.e6, https://doi.org/10.1016/j.neuron.2020.01.015.Search in Google Scholar PubMed
Kanari, L., Dictus, H., Chalimourda, A., Arnaudon, A., Van Geit, W., Coste, B., Shillcock, J., Hess, K., and Markram, H. (2022). Computational synthesis of cortical dendritic morphologies. Cell Rep. 39: 110586, https://doi.org/10.1016/j.celrep.2022.110586.Search in Google Scholar PubMed
Kandel, E.R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science 294: 1030–1038, https://doi.org/10.1126/science.1067020.Search in Google Scholar PubMed
Kang, L. and Balasubramanian, V. (2019). A geometric attractor mechanism for self-organization of entorhinal grid modules. Elife 8, https://doi.org/10.7554/elife.46687.Search in Google Scholar PubMed PubMed Central
Kemker, R. and Christopher, K. (2017). Fearnet: brain-inspired model for incremental learning. arXiv Preprint, https://doi.org/10.48550/arXiv.1711.10563.Search in Google Scholar
Kepecs, A. and Fishell, G. (2014). Interneuron cell types are fit to function. Nature 505: 318–326, https://doi.org/10.1038/nature12983.Search in Google Scholar PubMed PubMed Central
Khazipov, R., Sirota, A., Leinekugel, X., Holmes, G.L., Ben-Ari, Y., and Buzsáki, G. (2004). Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432: 758–761, https://doi.org/10.1038/nature03132.Search in Google Scholar PubMed
Khodagholy, D., Gelinas, J.N., and Buzsáki, G. (2017). Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science 358: 369–372, https://doi.org/10.1126/science.aan6203.Search in Google Scholar PubMed PubMed Central
Kim, G., Jang, J., Baek, S., Song, M., and Paik, S.B. (2021). Visual number sense in untrained deep neural networks. Sci. Adv. 7, https://doi.org/10.1126/sciadv.abd6127.Search in Google Scholar PubMed PubMed Central
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.. (2017). Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. U. S. A. 114: 3521–3526, https://doi.org/10.1073/pnas.1611835114.Search in Google Scholar PubMed PubMed Central
Knudsen, E.B. and Wallis, J.D. (2021). Hippocampal neurons construct a map of an abstract value space. Cell 184: 4640.e10–4650.e10, https://doi.org/10.1016/j.cell.2021.07.010.Search in Google Scholar PubMed PubMed Central
Konidaris, G. (2019). On the necessity of abstraction. Curr. Opin. Behav. Sci. 29: 1–7, https://doi.org/10.1016/j.cobeha.2018.11.005.Search in Google Scholar PubMed PubMed Central
Korngiebel, D.M. and Mooney, S.D. (2021). Considering the possibilities and pitfalls of Generative Pre-trained Transformer 3 (GPT-3) in healthcare delivery. NPJ Digit. Med. 4: 93, https://doi.org/10.1038/s41746-021-00464-x.Search in Google Scholar PubMed PubMed Central
Krabbe, S., Paradiso, E., d’Aquin, S., Bitterman, Y., Courtin, J., Xu, C., Yonehara, K., Markovic, M., Müller, C., Eichlisberger, T., et al.. (2019). Adaptive disinhibitory gating by VIP interneurons permits associative learning. Nat. Neurosci. 22: 1834–1843, https://doi.org/10.1038/s41593-019-0508-y.Search in Google Scholar PubMed
Kumaran, D. (2012). What representations and computations underpin the contribution of the hippocampus to generalization and inference? Front. Hum. Neurosci. 6: 157, https://doi.org/10.3389/fnhum.2012.00157.Search in Google Scholar PubMed PubMed Central
Kumaran, D., Hassabis, D., and McClelland, J.L. (2016). What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends Cognit. Sci. 20: 512–534, https://doi.org/10.1016/j.tics.2016.05.004.Search in Google Scholar PubMed
Kutter, E.F., Bostroem, J., Elger, C.E., Mormann, F., and Nieder, A. (2018). Single neurons in the human brain encode numbers. Neuron 100: 753.e4–761.e4, https://doi.org/10.1016/j.neuron.2018.08.036.Search in Google Scholar PubMed
Langston, R.F., Ainge, J.A., Couey, J.J., Canto, C.B., Bjerknes, T.L., Witter, M.P., Moser, E.I., and Moser, M.B. (2010). Development of the spatial representation system in the rat. Science 328: 1576–1580, https://doi.org/10.1126/science.1188210.Search in Google Scholar PubMed
Lanore, F., Cayco-Gajic, N.A., Gurnani, H., Coyle, D., and Silver, R.A. (2021). Cerebellar granule cell axons support high-dimensional representations. Nat. Neurosci. 24: 1142–1150, https://doi.org/10.1038/s41593-021-00873-x.Search in Google Scholar PubMed PubMed Central
Lefort, S., Tomm, C., Floyd Sarria, J.C., and Petersen, C.C.H. (2009). The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61: 301–316, https://doi.org/10.1016/j.neuron.2008.12.020.Search in Google Scholar PubMed
Lehtelä, L., Salmelin, R., and Hari, R. (1997). Evidence for reactive magnetic 10-Hz rhythm in the human auditory cortex. Neurosci. Lett. 222: 111–114, https://doi.org/10.1016/s0304-3940(97)13361-4.Search in Google Scholar PubMed
Leutgeb, J.K., Leutgeb, S., Treves, A., Meyer, R., Barnes, C.A., McNaughton, B.L., Moser, M.B., and Moser, E.I. (2005). Progressive transformation of hippocampal neuronal representations in “morphed” environments. Neuron 48: 345–358, https://doi.org/10.1016/j.neuron.2005.09.007.Search in Google Scholar PubMed
Lever, C., Burton, S., Jeewajee, A., O’Keefe, J., and Burgess, N. (2009). Boundary vector cells in the subiculum of the hippocampal formation. J. Neurosci. 29: 9771–9777, https://doi.org/10.1523/jneurosci.1319-09.2009.Search in Google Scholar
Lever, C., Wills, T., Cacucci, F., Burgess, N., and O’Keefe, J. (2002). Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416: 90–94, https://doi.org/10.1038/416090a.Search in Google Scholar PubMed
Li, X., Ouyang, G., Usami, A., Ikegaya, Y., and Sik, A. (2010). Scale-free topology of the CA3 hippocampal network: a novel method to analyze functional neuronal assemblies. Biophys. J. 98: 1733–1741, https://doi.org/10.1016/j.bpj.2010.01.013.Search in Google Scholar PubMed PubMed Central
Li, Z. and Hoiem, D. (2018). Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40: 2935–2947, https://doi.org/10.1109/tpami.2017.2773081.Search in Google Scholar PubMed
Liu, Y., Mattar, M.G., Behrens, T.E.J., Daw, N.D., and Dolan, R.J. (2021). Experience replay is associated with efficient nonlocal learning. Science 372, https://doi.org/10.1126/science.abf1357.Search in Google Scholar PubMed PubMed Central
London, M. and Häusser, M. (2005). Dendritic computation. Annu. Rev. Neurosci. 28: 503–532, https://doi.org/10.1146/annurev.neuro.28.061604.135703.Search in Google Scholar PubMed
Latchoumane, C.F.V., Ngo, H.V., Born, J., and Shin, H.S. (2017). Thalamic spindles promote memory formation during sleep through triple phase-locking of cortical, thalamic, and hippocampal rhythms. Neuron 95: 424.e6–435.e6, https://doi.org/10.1016/j.neuron.2017.06.025.Search in Google Scholar PubMed
Ma, R., Miao, J., Niu, L., and Zhang, P. (2019). Transformed ℓ1 regularization for learning sparse deep neural networks. Neural Network 119: 286–298, https://doi.org/10.1016/j.neunet.2019.08.015.Search in Google Scholar PubMed
Mander, B.A., Winer, J.R., and Walker, M.P. (2017). Sleep and human aging. Neuron 94: 19–36, https://doi.org/10.1016/j.neuron.2017.02.004.Search in Google Scholar PubMed PubMed Central
Mandler, G. and Shebo, B.J. (1982). Subitizing: an analysis of its component processes. J. Exp. Psychol. Gen. 111: 1–22, https://doi.org/10.1037/0096-3445.111.1.1.Search in Google Scholar
Mathis, A., Herz, A.V.M., and Stemmler, M. (2012). Optimal population codes for space: grid cells outperform place cells. Neural Comput. 24: 2280–2317, https://doi.org/10.1162/neco_a_00319.Search in Google Scholar
McCloskey, M. and Cohen, N.J. (1989). Catastrophic interference in connectionist networks: the sequential learning problem. Psychol. Learn. Motiv. Adv. Res. Theor. 24: 109–165.10.1016/S0079-7421(08)60536-8Search in Google Scholar
Mccrink, K. and Wynn, K. (2004). Large-number addition and subtraction by 9-month-old infants. Psychol. Sci. 15: 776–781, https://doi.org/10.1111/j.0956-7976.2004.00755.x.Search in Google Scholar PubMed
Michon, F., Sun, J.J., Kim, C.Y., Ciliberti, D., and Kloosterman, F. (2019). Post-learning hippocampal replay selectively reinforces spatial memory for highly rewarded locations. Curr. Biol. 29: 1436.e5–1444.e5, https://doi.org/10.1016/j.cub.2019.03.048.Search in Google Scholar PubMed
Mikutta, C., Feige, B., Maier, J.G., Hertenstein, E., Holz, J., Riemann, D., and Nissen, C. (2019). Phase-amplitude coupling of sleep slow oscillatory and spindle activity correlates with overnight memory consolidation. J. Sleep Res. 28: e12835, https://doi.org/10.1111/jsr.12835.Search in Google Scholar PubMed
Mindell, J.A., Sadeh, A., Wiegand, B., How, T.H., and Goh, D.Y.T. (2010). Cross-cultural differences in infant and toddler sleep. Sleep Med. 11: 274–280, https://doi.org/10.1016/j.sleep.2009.04.012.Search in Google Scholar PubMed
Mitsuno, K., Miyao, J., and Kurita, T. (2020). Hierarchical group sparse regularization for deep convolutional neural networks; hierarchical group sparse regularization for deep convolutional neural networks. In: 2020 international joint conference on neural networks (IJCNN).10.1109/IJCNN48605.2020.9207531Search in Google Scholar
Miyawaki, H. and Mizuseki, K. (2022). De novo inter-regional coactivations of preconfigured local ensembles support memory. Nat. Commun. 11: 1272, https://doi.org/10.1038/s41467-022-28929-x.Search in Google Scholar PubMed PubMed Central
Mölle, M., Bergmann, T.O., Marshall, L., and Born, J. (2011). Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. Sleep 34: 1411–1421, https://doi.org/10.5665/sleep.1290.Search in Google Scholar PubMed PubMed Central
Moser, E.I., Kropff, E. and Moser, M.B. (2008). Place cells, grid cells, and the Brain’s spatial representation system. Annu. Rev. Neurosci. 31: 69–89, https://doi.org/10.1146/annurev.neuro.31.061307.090723.Search in Google Scholar PubMed
Muller, R.U. and Kubie, J.L. (1987). The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7: 1951–1968, https://doi.org/10.1523/jneurosci.07-07-01951.1987.Search in Google Scholar PubMed PubMed Central
Nakazawa, K., McHugh, T.J., Wilson, M.A., and Tonegawa, S. (2004). NMDA receptors, place cells and hippocampal spatial memory. Nat. Rev. Neurosci. 5: 361–372, https://doi.org/10.1038/nrn1385.Search in Google Scholar PubMed
Nasr, K., Viswanathan, P., and Nieder, A. (2019). Number detectors spontaneously emerge in a deep neural network designed for visual object recognition. Sci. Adv. 5: eaav7903, https://doi.org/10.1126/sciadv.aav7903.Search in Google Scholar PubMed PubMed Central
Navarro-Lobato, I. and Genzel, L. (2019). The up and down of sleep: from molecules to electrophysiology. Neurobiol. Learn. Mem. 160: 3–10, https://doi.org/10.1016/j.nlm.2018.03.013.Search in Google Scholar PubMed
Ngo, C.T., Benear, S.L., Popal, H., Olson, I.R., and Newcombe, N.S. (2021). Contingency of semantic generalization on episodic specificity varies across development. Curr. Biol. 31: 2690.e5–2697.e5, https://doi.org/10.1016/j.cub.2021.03.088.Search in Google Scholar PubMed PubMed Central
Nieder, A. (2016). The neuronal code for number. Nat. Rev. Neurosci. 17: 366–382, https://doi.org/10.1038/nrn.2016.40.Search in Google Scholar PubMed
Nieder, A. (2021). Neuroethology of number sense across the animal kingdom. J. Exp. Biol. 224: 244764, https://doi.org/10.1242/jeb.218289.Search in Google Scholar PubMed
Nieder, A. and Dehaene, S. (2009). Representation of number in the brain. Annu. Rev. Neurosci. 32: 185–208, https://doi.org/10.1146/annurev.neuro.051508.135550.Search in Google Scholar PubMed
Nieder, A. and Miller, E.K. (2004). A parieto-frontal network for visual numerical information in the monkey. Proc. Natl. Acad. Sci. U. S. A. 101: 7457–7462, https://doi.org/10.1073/pnas.0402239101.Search in Google Scholar PubMed PubMed Central
Norimoto, H., Makino, K., Gao, M., Shikano, Y., Okamoto, K., Ishikawa, T., Sasaki, T., Hioki, H., Fujisawa, S., and Ikegaya, Y. (2018). Hippocampal ripples down-regulate synapses. Science 359: 1524–1527, https://doi.org/10.1126/science.aao0702.Search in Google Scholar PubMed
O’Keefe, J. and Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature 381: 425–428, https://doi.org/10.1038/381425a0.Search in Google Scholar PubMed
O’Keefe, J. and Recce, M.L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3: 317–330, https://doi.org/10.1002/hipo.450030307.Search in Google Scholar PubMed
Oby, E.R., Golub, M.D., Hennig, J.A., Degenhart, A.D., Tyler-Kabara, E.C., Yu, B.M., Chase, S.M., and Batista, A.P. (2019). New neural activity patterns emerge with long-term learning. Proc. Natl. Acad. Sci. U. S. A. 116: 15210–15215, https://doi.org/10.1073/pnas.1820296116.Search in Google Scholar PubMed PubMed Central
Ohki, T. (2022). Measuring phase-amplitude coupling between neural oscillations of different frequencies via the Wasserstein distance. J. Neurosci. Methods 374: 109578, https://doi.org/10.1016/j.jneumeth.2022.109578.Search in Google Scholar PubMed
Ohki, T., Gunji, A., Takei, Y., Takahashi, H., Kaneko, Y., Kita, Y., Hironaga, N., Tobimatsu, S., Kamio, Y., Hanakawa, T., et al.. (2016). Neural oscillations in the temporal pole for a temporally congruent audio-visual speech detection task. Sci. Rep. 6: 37973, https://doi.org/10.1038/srep37973.Search in Google Scholar PubMed PubMed Central
Ohki, T. and Takei, Y. (2018). Neural mechanisms of mental schema: a triplet of delta, low beta/spindle and ripple oscillations. Eur. J. Neurosci. 48: 2416–2430, https://doi.org/10.1111/ejn.13844.Search in Google Scholar PubMed
Oyanedel, C.N., Durán, E., Niethard, N., Inostroza, M., and Born, J. (2020). Temporal associations between sleep slow oscillations, spindles and ripples. Eur. J. Neurosci. 52: 4762–4778, https://doi.org/10.1111/ejn.14906.Search in Google Scholar PubMed
Palm, G., Knoblauch, A., Triesch, J., Parisi, G.I., Tani, J., Weber, C. and Wermter, S. (2018). Lifelong learning of spatiotemporal representations with Dual-Memory recurrent self-organization. Front. Neurorob. 12: 78, https://doi.org/10.3389/fnbot.2018.00078.Search in Google Scholar PubMed PubMed Central
Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., and Wermter, S. (2019). Continual lifelong learning with neural networks: a review. Neural Network 113: 54–71, https://doi.org/10.1016/j.neunet.2019.01.012.Search in Google Scholar PubMed
Patania, A., Selvaggi, P., Veronese, M., Dipasquale, O., Expert, P., and Petri, G. (2019). Topological gene expression networks recapitulate brain anatomy and function. Netw. Neurosci. 3: 744–762, https://doi.org/10.1162/netn_a_00094.Search in Google Scholar PubMed PubMed Central
Pavlides, C. and Winson, J. (1989). Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. J. Neurosci. 9: 2907–2918, https://doi.org/10.1523/jneurosci.09-08-02907.1989.Search in Google Scholar
Pica, P., Lemer, C., Izard, V., and Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science 306: 499–503, https://doi.org/10.1126/science.1102085.Search in Google Scholar PubMed
Qasim, S.E., Fried, I., and Jacobs, J. (2021). Phase precession in the human hippocampus and entorhinal cortex. Cell 184: 3242.e10–3255.e10, https://doi.org/10.1016/j.cell.2021.04.017.Search in Google Scholar PubMed PubMed Central
Raichle, M.E. (2010). Two views of brain function. Trends Cognit. Sci. 14: 180–190, https://doi.org/10.1016/j.tics.2010.01.008.Search in Google Scholar PubMed
Rasmussen, M.A. and Bro, R. (2012). A tutorial on the Lasso approach to sparse modeling. Chemometr. Intell. Lab. Syst. 119: 21–31, https://doi.org/10.1016/j.chemolab.2012.10.003.Search in Google Scholar
Revkin, S.K., Piazza, M., Izard, V., Cohen, L., and Dehaene, S. (2008). Does subitizing reflect numerical estimation? Psychol. Sci. 19: 607–614, https://doi.org/10.1111/j.1467-9280.2008.02130.x.Search in Google Scholar PubMed
Robins, A. (1995). Catastrophic forgetting, rehearsal and pseudorehearsal. Connect. Sci. 7: 123–146, https://doi.org/10.1080/09540099550039318.Search in Google Scholar
Romano, D., Nicolau, M., Quintin, E.M., Mazaika, P.K., Lightbody, A.A., Cody Hazlett, H., Piven, J., Carlsson, G., and Reiss, A.L. (2014). Topological methods reveal high and low functioning neuro-phenotypes within fragile X syndrome. Hum. Brain Mapp. 35: 4904–4915, https://doi.org/10.1002/hbm.22521.Search in Google Scholar PubMed PubMed Central
Roscow, E.L., Chua, R., Costa, R.P., Jones, M.W., and Lepora, N. (2021). Learning offline: memory replay in biological and artificial reinforcement learning. Trends Neurosci. 44: 808–821, https://doi.org/10.1016/j.tins.2021.07.007.Search in Google Scholar PubMed
Rostami, B., Anisuzzaman, D.M., Wang, C., Gopalakrishnan, S., Niezgoda, J., and Yu, Z. (2021). Multiclass wound image classification using an ensemble deep CNN-based classifier. Comput. Biol. Med. 134: 104536, https://doi.org/10.1016/j.compbiomed.2021.104536.Search in Google Scholar PubMed
Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Hadsell, R. (2016). Progressive neural networks. arXiv Preprint, https://doi.org/10.48550/arXiv.1606.04671.Search in Google Scholar
Sadeh, A., Mindell, J.A., Luedtke, K., and Wiegand, B. (2009). Sleep and sleep ecology in the first 3 years: a web-based study. J. Sleep Res. 18: 60–73, https://doi.org/10.1111/j.1365-2869.2008.00699.x.Search in Google Scholar PubMed
Samanta, A., Alonso, A., and Genzel, L. (2020). Memory reactivations and consolidation: considering neuromodulators across wake and sleep. Curr. Opin. Physiol. 15: 120–127, https://doi.org/10.1016/j.cophys.2020.01.003.Search in Google Scholar
Sanders, H., Wilson, M.A., and Gershman, S.J. (2020). Hippocampal remapping as hidden state inference. Elife 9: 1–31, https://doi.org/10.7554/elife.51140.Search in Google Scholar PubMed PubMed Central
Sarel, A., Finkelstein, A., Las, L., and Ulanovsky, N. (2017). Vectorial representation of spatial goals in the hippocampus of bats. Science 355: 176–180, https://doi.org/10.1126/science.aak9589.Search in Google Scholar PubMed
Sawamura, H., Shima, K., and Tanji, J. (2002). Numerical representation for action in the parietal cortex of the monkey. Nature 415: 918–922, https://doi.org/10.1038/415918a.Search in Google Scholar PubMed
Sayer, R.J., Friedlander, M.J., and Redman, S.J. (1990). The time course and amplitude of EPSPs evoked at synapses between pairs of CA3/CAl neurons in the hippocampal slice. J. Neurosci. 70: 828–838.10.1523/JNEUROSCI.10-03-00826.1990Search in Google Scholar PubMed PubMed Central
Schilling, C., Gappa, L., Schredl, M., Streit, F., Treutlein, J., Frank, J., Deuschle, M., Meyer-Lindenberg, A., Rietschel, M., and Witt, S.H. (2018). Fast sleep spindle density is associated with rs4680 (Val108/158Met) genotype of catechol-O-methyltransferase (COMT). Sleep 41, https://doi.org/10.1093/sleep/zsy007.Search in Google Scholar PubMed
Sezgin, E., Sirrianni, J., and Linwood, S.L. (2022). Operationalizing and implementing pretrained, large artificial intelligence linguistic models in the US health care system: outlook of Generative Pretrained Transformer 3 (GPT-3) as a service model. JMIR Med. Inform. 10: e32875, https://doi.org/10.2196/32875.Search in Google Scholar PubMed PubMed Central
Shahbaba, B., Li, L., Agostinelli, F., Saraf, M., Cooper, K.W., Haghverdian, D., Elias, G.A., Baldi, P. and Fortin, N.J. (2022). Hippocampal ensembles represent sequential relationships among an extended sequence of nonspatial events. Nat. Commun. 13: 787, https://doi.org/10.1038/s41467-022-28057-6.Search in Google Scholar PubMed PubMed Central
Sherry, D.F., Jacobs, L.F. and Gaulin, S.J.C. (1992). Spatial memory and adaptive specialization of the hippocampus. Trends Neurosci. 15: 298–303, https://doi.org/10.1016/0166-2236(92)90080-r.Search in Google Scholar PubMed
Shin, H., Lee, J.K., Kim, J., and Kim, Sk. (2017). Continual learning with deep generative replay. Adv. Neural Inf. Process. Syst. 30.Search in Google Scholar
Singh, G., Memoli, F., Ishkhanov, T., Sapiro, G., Carlsson, G. and Ringach, D.L. (2008). Topological analysis of population activity in visual cortex. J. Vis. 8: 11.1–1118, https://doi.org/10.1167/8.8.11.Search in Google Scholar PubMed PubMed Central
Sizemore, A.E., Phillips-Cremins, J.E., Ghrist, R., and Bassett, D.S. (2019). The importance of the whole: topological data analysis for the network neuroscientist. Netw. Neurosci. 3: 656–673, https://doi.org/10.1162/netn_a_00073.Search in Google Scholar PubMed PubMed Central
Song, S., Sjöström, P.J., Reigl, M., Nelson, S., and Chklovskii, D.B. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3: e68, https://doi.org/10.1371/journal.pbio.0030068.Search in Google Scholar PubMed PubMed Central
Stevenson, R.F., Zheng, J., Mnatsakanyan, L., Vadera, S., Knight, R.T., Lin, J.J. and Yassa, M.A. (2018). Hippocampal CA1 gamma power predicts the precision of spatial memory judgments. Proc. Natl. Acad. Sci. U. S. A. 115: 10148–10153, https://doi.org/10.1073/pnas.1805724115.Search in Google Scholar PubMed PubMed Central
Stoianov, I. and Zorzi, M. (2012). Emergence of a “visual number sense” in hierarchical generative models. Nat. Neurosci. 15: 194–196, https://doi.org/10.1038/nn.2996.Search in Google Scholar PubMed
Stolz, B.J., Emerson, T., Nahkuri, S., Porter, M.A., and Harrington, H.A. (2021). Topological data analysis of task-based fMRI data from experiments on schizophrenia. J. Phys. Complex. 2: 035006, https://doi.org/10.1088/2632-072x/abb4c6.Search in Google Scholar
Strubell, E., Ganesh, A., and McCallum, A. (2020). Energy and policy considerations for modern deep learning research. AAAI 34: 13693–13696, https://doi.org/10.1609/aaai.v34i09.7123.Search in Google Scholar
Sunaga, M., Takei, Y., Kato, Y., Tagawa, M., Suto, T., Hironaga, N., Ohki, T., Takahashi, Y., Fujihara, K., Sakurai, N., et al.. (2020). Frequency-specific resting connectome in bipolar disorder: an MEG study. Front. Psychiatr. 11: 597, https://doi.org/10.3389/fpsyt.2020.00597.Search in Google Scholar PubMed PubMed Central
Tagawa, M., Takei, Y., Kato, Y., Suto, T., Hironaga, N., Ohki, T., Takahashi, Y., Fujihara, K., Sakurai, N., Ujita, K., et al.. (2022). Disrupted local beta band networks in schizophrenia revealed through graph analysis: a magnetoencephalography study. Psychiatr. Clin. Neurosci. 76: 309–320, https://doi.org/10.1111/pcn.13362.Search in Google Scholar PubMed
Takahashi, N., Sasaki, T., Matsumoto, W., Matsuki, N., and Ikegaya, Y. (2010). Circuit topology for synchronizing neurons in spontaneously active networks. Proc. Natl. Acad. Sci. U. S. A. 107: 10244–10249, https://doi.org/10.1073/pnas.0914594107.Search in Google Scholar PubMed PubMed Central
Tenenbaum, J.B., Kemp, C., Griffiths, T.L., and Goodman, N.D. (2011). How to grow a mind: statistics, structure, and abstraction. Science 331: 1279–1285, https://doi.org/10.1126/science.1192788.Search in Google Scholar PubMed
Terada, S., Sakurai, Y., Nakahara, H., and Fujisawa, S. (2017). Temporal and rate coding for discrete event sequences in the hippocampus. Neuron 94: 1248.e4–1262.e4, https://doi.org/10.1016/j.neuron.2017.05.024.Search in Google Scholar PubMed
Tingley, D. and Peyrache, A. (2020). On the methods for reactivation and replay analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375: 20190231, https://doi.org/10.1098/rstb.2019.0231.Search in Google Scholar PubMed PubMed Central
Tonolini, F., Jensen, B.S., and Murray-Smith, R. (2020). Variational sparse coding. In: Proceedings of the 35th uncertainty in artificial intelligence conference. PMLR 115, pp. 690–700.Search in Google Scholar
Tononi, G. and Cirelli, C. (2014). Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81: 12–34, https://doi.org/10.1016/j.neuron.2013.12.025.Search in Google Scholar PubMed PubMed Central
Topaz, C.M., Ziegelmeier, L., and Halverson, T. (2015). Topological data analysis of biological aggregation models. PLoS One 10: e0126383, https://doi.org/10.1371/journal.pone.0126383.Search in Google Scholar PubMed PubMed Central
Tse, D., Langston, R.F., Kakeyama, M., Bethus, I., Spooner, P.A., Wood, E.R., Witter, M.P., and Morris, R.G.M. (2007). Schemas and memory consolidation. Science 316: 76–82, https://doi.org/10.1126/science.1135935.Search in Google Scholar PubMed
Vaidya, A.R., Jones, H.M., Castillo, J., and Badre, D. (2021). Neural representation of abstract task structure during generalization. Elife 10, https://doi.org/10.7554/elife.63226.Search in Google Scholar PubMed PubMed Central
van de Ven, G.M., Siegelmann, H.T., and Tolias, A.S. (2020). Brain-inspired replay for continual learning with artificial neural networks. Nat. Commun. 11: 4069, https://doi.org/10.1038/s41467-020-17866-2.Search in Google Scholar PubMed PubMed Central
van der Meer, M.A.A., Kemere, C., and Diba, K. (2020). Progress and issues in second-order analysis of hippocampal replay. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375: 20190238, https://doi.org/10.1098/rstb.2019.0238.Search in Google Scholar PubMed PubMed Central
Wallenstein, G.V., Eichenbaum, H., and Hasselmo, M.E. (1998). The hippocampus as an associator of discontiguous events. Trends Neurosci. 21: 317–323, https://doi.org/10.1016/s0166-2236(97)01220-4.Search in Google Scholar PubMed
Walker, M.P. and Stickgold, R. (2004). Sleep-dependent learning and memory consolidation. Neuron 44: 121–133, https://doi.org/10.1016/j.neuron.2004.08.031.Search in Google Scholar PubMed
Wang, L., Lei, B., Li, Q., Su, H., Zhu, J., and Zhong, Y. (2022). Triple-memory networks: a brain-inspired method for continual learning. IEEE Trans. Neural Network Learn. Syst. 33: 1925–1934, https://doi.org/10.1109/tnnls.2021.3111019.Search in Google Scholar
Wei, X.X., Prentice, J., and Balasubramanian, V. (2015). A principle of economy predicts the functional architecture of grid cells. Elife 4: e08362, https://doi.org/10.7554/elife.08362.Search in Google Scholar
Wikenheiser, A.M. and Redish, A.D. (2015). Hippocampal theta sequences reflect current goals. Nat. Neurosci. 18: 289–294, https://doi.org/10.1038/nn.3909.Search in Google Scholar PubMed PubMed Central
Wills, T.J., Cacucci, F., Burgess, N., and O’Keefe, J. (2010). Development of the hippocampal cognitive map in preweanling rats. Science 328: 1573–1576, https://doi.org/10.1126/science.1188224.Search in Google Scholar PubMed PubMed Central
Wittkuhn, L., Chien, S., Hall-McMaster, S., and Schuck, N.W. (2021). Replay in minds and machines. Neurosci. Biobehav. Rev. 129: 367–388, https://doi.org/10.1016/j.neubiorev.2021.08.002.Search in Google Scholar PubMed
Xu, M., Shen, Y., Zhang, S., Lu, Y., Zhao, D., Tenenbaum, J.B., and Gan, C. (2022). Prompting decision transformer for few-shot policy generalization. In: Proceedings of the 39th International conference on machine learning. PMLR 162, pp. 24631–24645.Search in Google Scholar
Yaguchi, A., Suzuki, T., Asano, W., Nitta, S., Sakata, Y. and Tanizawa, A. (2018). Adam induces implicit weight sparsity in rectifier neural networks. Proceedings ICMLA 2018: 318–325.10.1109/ICMLA.2018.00054Search in Google Scholar
Yamaguchi, M. (2010). Understanding mathematics. Chikumashobo, Tokyo.Search in Google Scholar
Zeithamova, D. and Bowman, C.R. (2020). Generalization and the hippocampus: more than one story? Neurobiol. Learn. Mem. 175: 107317, https://doi.org/10.1016/j.nlm.2020.107317.Search in Google Scholar PubMed PubMed Central
Zeki, S. (1999). Splendours and miseries of the brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354: 2053–2065, https://doi.org/10.1098/rstb.1999.0543.Search in Google Scholar PubMed PubMed Central
Zeng, H. and Sanes, J.R. (2017). Neuronal cell-type classification: challenges, opportunities and the path forward. Nat. Rev. Neurosci. 18: 530–546, https://doi.org/10.1038/nrn.2017.85.Search in Google Scholar PubMed
Zhang, D. and Raichle, M.E. (2010). Disease and the brain’s dark energy. Nat. Rev. Neurol. 6: 15–28, https://doi.org/10.1038/nrneurol.2009.198.Search in Google Scholar PubMed
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Efficient, continual, and generalized learning in the brain – neural mechanism of Mental Schema 2.0 –
- Current status of Guillain–Barré syndrome (GBS) in China: a 10-year comprehensive overview
- The role of pain modulation pathway and related brain regions in pain
- Transsulfuration pathway: a targeting neuromodulator in Parkinson’s disease
- Involvement of microglia in chronic neuropathic pain associated with spinal cord injury – a systematic review
Articles in the same Issue
- Frontmatter
- Efficient, continual, and generalized learning in the brain – neural mechanism of Mental Schema 2.0 –
- Current status of Guillain–Barré syndrome (GBS) in China: a 10-year comprehensive overview
- The role of pain modulation pathway and related brain regions in pain
- Transsulfuration pathway: a targeting neuromodulator in Parkinson’s disease
- Involvement of microglia in chronic neuropathic pain associated with spinal cord injury – a systematic review