Abstract
Gut microbiota have been shown to be useful in treating gastrointestinal diseases, cancer, obesity, infections, and, more recently, neuropsychiatric conditions such as degenerative diseases and depression. There has also been recent expansion in testing probiotics and prebiotics on anxiety-like behaviors in animals. Current results indicate that probiotic substances of the Lactobacillus and Bifidobacterium type are effective in reducing anxiety-like behaviors in mice or rats evaluated in the elevated plus-maze, the open-field, the light-dark box, and conditioned defensive burying. Probiotics are also effective in reducing serum or plasma corticosterone levels after acute stress. It is hypothesized that probiotics cause anxiolytic-like effects via vagal influences on caudal solitary nucleus, periaqueductal gray, central nucleus of the amygdala, and bed nucleus of the stria terminalis. Further experimentation is needed to trace the neurochemical anatomy underlying anxiolytic-like behaviors of gut microbiata exerting effects via vagal or nonvagal pathways.
Funding source: EA7300
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Our work is supported by EA7300.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Ahlawat, S., Shankar, A., Vandna Mohan, H., and Sharma, K.K. (2021). Yersinia enterocolitica and Lactobacillus fermentum induces differential cellular and behavioral responses during diclofenac biotransformation in rat gut. Toxicol. Appl. Pharmacol. 431: 115741, https://doi.org/10.1016/j.taap.2021.115741.Search in Google Scholar PubMed
Ait-Belgnaoui, A., Durand, H., Cartier, C., Chaumaz, G., Eutamene, H., Ferrier, L., Houdeau, E., Fioramonti, J., Bueno, L., and Theodorou, V. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37: 1885–1895, https://doi.org/10.1016/j.psyneuen.2012.03.024.Search in Google Scholar PubMed
Akkasheh, G., Kashani-Poor, Z., Tajabadi-Ebrahimi, M., Jafari, P., Akbari, H., Taghizadeh, M., Memarzadeh, M.R., Asemi, Z., and Esmaillzadeh, A. (2016). Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition 32: 315–320, https://doi.org/10.1016/j.nut.2015.09.003.Search in Google Scholar PubMed
Allen, A.P., Hutch, W., Borre, Y.E., Kennedy, P.J., Temko, A., Boylan, G., Murphy, E., Cryan, J.F., Dinan, T.G., and Clarke, G. (2016). Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl. Psychiatry 6: e939, https://doi.org/10.1038/tp.2016.191.Search in Google Scholar PubMed PubMed Central
Altaib, H., Nakamura, K., Abe, M., Badr, Y., Yanase, E., Nomura, I., and Suzuki, T. (2021). Differences in the concentration of the fecal neurotransmitters GABA and glutamate are associated with microbial composition among healthy human subjects. Microorganisms 9: 378, https://doi.org/10.3390/microorganisms9020378.Search in Google Scholar PubMed PubMed Central
Andresen, V. and Camilleri, M. (2006). Irritable bowel syndrome: recent and novel therapeutic approaches. Drugs 66: 1073–1088, https://doi.org/10.2165/00003495-200666080-00004.Search in Google Scholar PubMed
Appleton, J. (2018). The gut-brain axis: influence of microbiota on mood and mental health. Integr. Med. 17: 28–32.Search in Google Scholar
Barrera-Bugueno, C., Realini, O., Escobar-Luna, J., Sotomayor-Zárate, R., Gotteland, M., Julio-Pieper, M., and Bravo, J.A. (2017). Anxiogenic effects of a Lactobacillus, inulin and the synbiotic on healthy juvenile rats. Neuroscience 359: 18–29, https://doi.org/10.1016/j.neuroscience.2017.06.064.Search in Google Scholar PubMed
Barros-Santos, T., Silva, K.S.O., Libarino-Santos, M., Cata-Preta, E.S., Reis, H.S., Tamura, E.K., de Oliveira-Lima, A.J., Berro, L.F., Uetanabaro, A.P.T., and Marinho, E.A.V. (2020). Effects of chronic treatment with new strains of Lactobacillus plantarum on cognitive, anxiety- and depressive-like behaviors in male mice. PLoS One 15: e0234037, https://doi.org/10.1371/journal.pone.0234037.Search in Google Scholar PubMed PubMed Central
Bear, T., Dalziel, J., Coad, J., Roy, N., Butts, C., and Gopal, P. (2021). The microbiome-gut-brain axis and resilience to developing anxiety or depression under stress. Microorganisms 9: 723, https://doi.org/10.3390/microorganisms9040723.Search in Google Scholar PubMed PubMed Central
Benton, D., Williams, C., and Brown, A. (2007). Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur. J. Clin. Nutr. 61: 355–361, https://doi.org/10.1038/sj.ejcn.1602546.Search in Google Scholar PubMed
Bercik, P., Verdu, E.F., Foster, J.A., Macri, J., Potter, M., Huang, X., Malinowski, P., Jackson, W., Blennerhassett, P., Neufeld, K.A., et al.. (2010). Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139: 2102–2112, https://doi.org/10.1053/j.gastro.2010.06.063.Search in Google Scholar PubMed
Bercik, P., Park, A.J., Sinclair, D., Khoshdel, A., Lu, J., Huang, X., Deng, Y., Blennerhassett, P.A., Fahnestock, M., Moine, D., et al.. (2011). The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neuro Gastroenterol. Motil. 23: 1132–1139, https://doi.org/10.1111/j.1365-2982.2011.01796.x.Search in Google Scholar PubMed PubMed Central
Bermudez-Humaran, L.G., Salinas, E., Ortiz, G.G., Ramirez-Jirano, J., Morales, J.A., and Quintero, O.K.B. (2019). From probiotics to psychobiotics: live beneficial bacteria which act on the brain-gut axis. Nutrients 11: 890, https://doi.org/10.3390/nu11040890.Search in Google Scholar PubMed PubMed Central
Bravo, J.A., Forsythe, P., Chew, M.V., Escaravage, E., Savignac, H.M., Dinan, T.G., Bienenstock, J., and Cryan, J.F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. U.S.A. 108: 16050–16055, https://doi.org/10.1073/pnas.1102999108.Search in Google Scholar PubMed PubMed Central
Burokas, A., Arboleya, S., Moloney, R.D., Peterson, V.L., Murphy, K., Clarke, G., Stanton, C., Dinan, T.G., and Cryan, J.F. (2017). Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol. Psychiatr. 82: 472–487, https://doi.org/10.1016/j.biopsych.2016.12.031.Search in Google Scholar PubMed
Butler, M.I., Cryan, J.F., and Dinan, T.G. (2019). Man and the microbiome: a new theory of everything? Annu. Rev. Clin. Psychol. 15: 371–398, https://doi.org/10.1146/annurev-clinpsy-050718-095432.Search in Google Scholar PubMed
Carpenter, M.B. (1991). Core text of neuroanatomy, 4th ed. Philadelphia: Williams & Wilkins.Search in Google Scholar
Chen, J., He, X., and Huang, J. (2014). Diet effects in gut microbiome and obesity. J. Food Sci. 79: R442–R451, https://doi.org/10.1111/1750-3841.12397.Search in Google Scholar PubMed
Chok, K.C., Ng, K.Y., Koh, R.Y., and Chye, S.M. (2021). Role of the gut microbiome in Alzheimer’s disease. Rev. Neurosci. 32: 767–789, https://doi.org/10.1515/revneuro-2020-0122.Search in Google Scholar PubMed
Cowan, C.S.M., Stylianakis, A.A., and Richardson, R. (2019). Early-life stress, microbiota, and brain development: probiotics reverse the effects of maternal separation on neural circuits underpinning fear expression and extinction in infant rats. Dev. Cogn. Neurosci. 37: 100627, https://doi.org/10.1016/j.dcn.2019.100627.Search in Google Scholar PubMed PubMed Central
Cryan, J.F., O’Riordan, K.J., Cowan, C.S.M., Sandhu, K.V., Bastiaanssen, T.F.S., Boehme, M., Codagnone, M.G., Cussotto, S., Fulling, C., Golubeva, A.V., et al.. (2019). The microbiota-gut-brain axis. Physiol. Rev. 99: 1877–2013, https://doi.org/10.1152/physrev.00018.2018.Search in Google Scholar PubMed
Daugé, V., Philippe, C., Mariadassou, M., Rué, O., Martin, J.C., Rossignol, M.N., Dourmap, N., Svilar, L., Tourniaire, F., Monnoye, M., et al.. (2020). A probiotic mixture induces anxiolytic- and antidepressive-like effects in Fischer and maternally deprived Long Evans rats. Front. Behav. Neurosci. 14: 581296.10.3389/fnbeh.2020.581296Search in Google Scholar PubMed PubMed Central
Davis, D.J., Doerr, H.M., Grzelak, A.K., Busi, S.B., Jasarevic, E., Ericsson, A.C., and Bryda, E.C. (2016). Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish. Sci. Rep. 6: 33726, https://doi.org/10.1038/srep33726.Search in Google Scholar PubMed PubMed Central
De la Fuente, M. (2021). The role of the microbiota-gut-brain axis in the health and illness condition: a focus on Alzheimer’s disease. J. Alz. Dis. 81: 1345–1360, https://doi.org/10.3233/jad-201587.Search in Google Scholar PubMed
Del Toro-Barbosa, M., Hurtado-Romero, A., Garcia-Amezquita, L.E., and García-Cayuela, T. (2020). Psychobiotics: mechanisms of action, evaluation methods and effectiveness in applications with food products. Nutrients 12: 3896, https://doi.org/10.3390/nu12123896.Search in Google Scholar PubMed PubMed Central
Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J., and Dinan, T.G. (2008). The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 43: 164–174, https://doi.org/10.1016/j.jpsychires.2008.03.009.Search in Google Scholar PubMed
Douglas-Escobar, M., Elliott, E., and Neu, J. (2013). Effect of intestinal microbial ecology on the developing brain. JAMA Pediatr. 2167: 374–379, https://doi.org/10.1001/jamapediatrics.2013.497.Search in Google Scholar PubMed
Dugyala, S., Ptacek, T.S., Simon, J.M., Li, Y., and Fröhlich, F. (2020). Putative modulation of the gut microbiome by probiotics enhances preference for novelty in a preliminary double-blind placebo-controlled study in ferrets. Anim. Microbiome 2: 14, https://doi.org/10.1186/s42523-020-00030-y.Search in Google Scholar PubMed PubMed Central
Engevik, M.A., Luck, B., Visuthranukul, C., Ihekweazu, F.D., Engevik, A.C., Shi, Z., Danhof, H.A., Chang-Graham, A.L., Hall, A., Endres, B.T., et al.. (2021). Human-derived Bifidobacterium dentium modulates the mammalian serotonergic system and gut-brain axis. J. Cell Mol. Gastroenterol. Hepatol. 11: 221–248, https://doi.org/10.1016/j.jcmgh.2020.08.002.Search in Google Scholar PubMed PubMed Central
Foster, J.A. (2021). Is anxiety associated with the gut microbiota? Mod. Trends Psychiatry 32: 68–73, https://doi.org/10.1159/000510418.Search in Google Scholar PubMed
Foster, J.A. and McVey Neufeld, K.A. (2013). Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36: 305–312, https://doi.org/10.1016/j.tins.2013.01.005.Search in Google Scholar PubMed
Fukui, H., Oshima, T., Tanaka, Y., Oikawa, Y., Makizaki, Y., Ohno, H., Tomita, T., Watari, J., and Miwa, H. (2018). Effect of probiotic Bifidobacterium bifidum G9-1 on the relationship between gut microbiota profile and stress sensitivity in maternally separated rats. Sci. Rep. 8: 12384, https://doi.org/10.1038/s41598-018-30943-3.Search in Google Scholar PubMed PubMed Central
Gall, A.J. and Griffin, G.D. (2021). Anxiolytic effects of administration of a commercially available prebiotic blend of galacto-oligosaccharides and beta glucans in Sprague-Dawley rats. Benef. Microbes 25: 1–10, https://doi.org/10.3920/bm2020.0169.Search in Google Scholar
Gao, K., Farzi, A., Ke, X., Yu, Y., Chen, C., Chen, S., Yu, T., Wang, H., and Li, Y. (2022). Oral administration of Lactococcus lactis WHH2078 alleviates depressive and anxiety symptoms in mice with induced chronic stress. Food Funct. 13: 957–969, https://doi.org/10.1039/d1fo03723d.Search in Google Scholar PubMed
Gareau, M.G., Jury, J., MacQueen, G., Sherman, P.M., and Perdue, M.H. (2007). Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56: 1522–1528, https://doi.org/10.1136/gut.2006.117176.Search in Google Scholar PubMed PubMed Central
Generoso, J.S., Giridharan, V.V., Lee, J., Macedo, D., and Barichello, T. (2021). The role of the microbiota-gut-brain axis in neuropsychiatric disorders. Br. J. Psychiatry 43: 293–305, https://doi.org/10.1590/1516-4446-2020-0987.Search in Google Scholar PubMed PubMed Central
Goehler, L.E., Gaykema, R.P., Opitz, N., Reddaway, R., Badr, N., and Lyte, M. (2005). Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav. Immun. 19: 334–444, https://doi.org/10.1016/j.bbi.2004.09.002.Search in Google Scholar PubMed
Goode, T.D., Ressler, R.L., Acca, G.M., Miles, O.W., and Maren, S. (2019). Bed nucleus of the stria terminalis regulates fear to unpredictable threat signals. eLife 8: e46525, https://doi.org/10.7554/eLife.46525.Search in Google Scholar PubMed PubMed Central
Haas, G.S., Wang, W., Saffar, M., Mooney-Leber, S.M., and Brummelte, S. (2020). Probiotic treatment (Bifidobacterium longum subsp. longum 35624) affects stress responsivity in male rats after chronic corticosterone exposure. Behav. Brain Res. 393: 112718, https://doi.org/10.1016/j.bbr.2020.112718.Search in Google Scholar PubMed
Hadizadeh, M., Hamidi, G.A., and Salami, M. (2019). Probiotic supplementation improves the cognitive function and the anxiety-like behaviors in the stressed rats. Iran J. Basic Med. Sci. 22: 506–514, https://doi.org/10.22038/ijbms.2019.33956.8078.Search in Google Scholar PubMed PubMed Central
Han, S.K. and Kim, D.H. (2019). Lactobacillus mucosae and Bifidobacterium longum synergistically alleviate immobilization stress-induced anxiety/depression in mice by suppressing gut dysbiosis. J. Microbiol. Biotechnol. 29: 1369–1374, https://doi.org/10.4014/jmb.1907.07044.Search in Google Scholar PubMed
Hao, Z., Wang, W., Guo, R., and Liu, H. (2019). Faecalibacterium prausnitzii (ATCC 27766) has preventive and therapeutic effects on chronic unpredictable mild stress-induced depression-like and anxiety-like behavior in rats. Psychoneuroendocrinology 104: 132–142, https://doi.org/10.1016/j.psyneuen.2019.02.025.Search in Google Scholar PubMed
Harmon-Jones, S.K., Cowan, C.S.M., Shnier, N., and Richardson, R. (2020). Is good memory always a good thing? An early offset of infantile amnesia predicts anxiety-like behavior throughout development in rats. Behav. Res. Ther. 135: 103763, https://doi.org/10.1016/j.brat.2020.103763.Search in Google Scholar PubMed
Hart, P.C., Bergner, C.L., Smolinsky, A.N., Dufour, B.D., Egan, R.J., Laporte, J.L., and Kalueff, A.V. (2010). Experimental models of anxiety for drug discovery and brain research. Methods Mol. Biol. 602: 299–321, https://doi.org/10.1007/978-1-60761-058-8_18.Search in Google Scholar PubMed
Hilimire, M.R., DeVylder, J.E., and Forestell, C.A. (2015). Fermented foods, neuroticism, and social anxiety: an interaction model. Psychiatr. Res. 228: 203–208, https://doi.org/10.1016/j.psychres.2015.04.023.Search in Google Scholar PubMed
Huang, F. and Wu, X. (2021). Brain neurotransmitter modulation by gut microbiota in anxiety and depression. Front. Cell Dev. Biol. 9: 649103, https://doi.org/10.3389/fcell.2021.649103.Search in Google Scholar PubMed PubMed Central
Jang, H.M., Lee, K.E., and Kim, D.H. (2019). The preventive and curative effects of Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98 on immobilization stress-induced anxiety/depression and colitis in mice. Nutrients 11: 819, https://doi.org/10.3390/nu11040819.Search in Google Scholar PubMed PubMed Central
Jang, H.M., Jang, S.E., Han, M.J., and Kim, D.H. (2018a). Anxiolytic-like effect of Bifidobacterium adolescentis IM38 in mice with or without immobilisation stress. Benef. Microbes 9: 123–132, https://doi.org/10.3920/bm2016.0226.Search in Google Scholar
Jang, H.M., Lee, K.E., Lee, H.J., and Kim, D.H. (2018b). Immobilization stress-induced Escherichia coli causes anxiety by inducing NF-κB activation through gut microbiota disturbance. Sci. Rep. 8: 13897, https://doi.org/10.1038/s41598-018-31764-0.Search in Google Scholar PubMed PubMed Central
Janik, R., Thomason, L.A.M., Stanisz, A.M., Forsythe, P., Bienenstock, J., and Stanisz, G.J. (2016). Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. Neuroimage 125: 988–995, https://doi.org/10.1016/j.neuroimage.2015.11.018.Search in Google Scholar PubMed
Jing, Y., Bai, F., and Yu, Y. (2021). Spinal cord injury and gut microbiota: a review. Life Sci. 266: 118865, https://doi.org/10.1016/j.lfs.2020.118865.Search in Google Scholar PubMed
Kawai, Y. (2018). Differential ascending projections from the male rat caudal nucleus of the tractus solitarius: an interface between local microcircuits and global macrocircuits. Front. Neuroanat. 12: 63, https://doi.org/10.3389/fnana.2018.00063.Search in Google Scholar PubMed PubMed Central
Kim, J., Yoon, B.E., and Jeon, Y.K. (2020). Effect of treadmill exercise and probiotic ingestion on motor coordination and brain activity in adolescent mice. Healthcare 9: 7, https://doi.org/10.3390/healthcare9010007.Search in Google Scholar PubMed PubMed Central
Lee, K.J. and Tack, J. (2010). Altered intestinal microbiota in irritable bowel syndrome. Neuro Gastroenterol. Motil. 22: 493–498, https://doi.org/10.1111/j.1365-2982.2010.01482.x.Search in Google Scholar PubMed
Lai, C.T., Chen, C.Y., She, S.C., Chen, W.J., Kuo, T.B.J., Lin, H.C., and Yang, C.C.H. (2020). Production of Lactobacillus brevis ProGA28 attenuates stress-related sleep disturbance and modulates the autonomic nervous system and the motor response in anxiety/depression behavioral tests in Wistar-Kyoto rats. Life Sci. 288: 120165.10.1016/j.lfs.2021.120165Search in Google Scholar PubMed
Lee, Y. and Kim, Y.K. (2021). Understanding the connection between the gut-brain axis and stress/anxiety disorders. Curr. Psychiatr. Rep. 23: 22, https://doi.org/10.1007/s11920-021-01235-x.Search in Google Scholar PubMed
Li, H. and Cao, Y. (2010). Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39: 1107–1116, https://doi.org/10.1007/s00726-010-0582-7.Search in Google Scholar PubMed
Li, N., Wang, Q., Wang, Y., Sun, A., Lin, Y., Jin, Y., and Li, X. (2018). Oral probiotics ameliorate the behavioral deficits induced by chronic mild stress in mice via the gut microbiota-inflammation axis. Front. Behav. Neurosci. 6: 266, https://doi.org/10.3389/fnbeh.2018.00266.Search in Google Scholar PubMed PubMed Central
Liang, S., Wang, T., Hu, X., Luo, J., Li, W., Wu, X., Duan, Y., and Jin, F. (2015). Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310: 561–577, https://doi.org/10.1016/j.neuroscience.2015.09.033.Search in Google Scholar PubMed
Liao, J.F., Hsu, C.C., Chou, G.T., Hsu, J.S., Liong, M.T., and Tsai, Y.C. (2019). Lactobacillus paracasei PS23 reduced early-life stress abnormalities in maternal separation mouse model. Benef. Microbes 10: 425–436, https://doi.org/10.3920/bm2018.0077.Search in Google Scholar
Liu, Q.F., Kim, H.M., Lim, S., Chung, M.J., Lim, C.Y., Koo, B.S., and Kang, S.S. (2020). Effect of probiotic administration on gut microbiota and depressive behaviors in mice. Daru 28: 181–189, https://doi.org/10.1007/s40199-020-00329-w.Search in Google Scholar PubMed PubMed Central
Liu, Y., Sanderson, D., Mian, F., McVey Neufeld, K.A., and Forsythe, P. (2021). Loss of vagal integrity disrupts immune components of the microbiota-gut-brain axis and inhibits the effect of Lactobacillus rhamnosus on behavior and the corticosterone stress response. Neuropharmacology 195: 108682, https://doi.org/10.1016/j.neuropharm.2021.108682.Search in Google Scholar
Liu, Y.W., Liu, W.H., Wu, C.C., Juan, Y.C., Wu, Y.C., Tsai, H.P., Wang, S., and Tsai, Y.C. (2016). Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve adult mice. Brain Res. 1631: 1–12, https://doi.org/10.1016/j.brainres.2015.11.018.Search in Google Scholar
Long-Smith, C., O’Riordan, K.J., Clarke, G., Stanton, C., Dinan, T.G., and Cryan, J.F. (2020). Microbiota-gut-brain axis: new therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 60: 477–502, https://doi.org/10.1146/annurev-pharmtox-010919-023628.Search in Google Scholar
Luang-In, V., Katisart, T., Konsue, A., Nudmamud-Thanoi, S., Narbad, A., Saengha, W., Wangkahart, E., Pumriw, S., Samappito, W., and Ma, N.L. (2020). Psychobiotic effects of multi-strain probiotics originated from Thai fermented foods in a rat model. Food Sci. Anim. Resour. 40: 1014–1032, https://doi.org/10.5851/kosfa.2020.e72.Search in Google Scholar
Lyte, M., Varcoe, J.J., and Bailey, M.T. (1998). Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiol. Behav. 65: 63–68, https://doi.org/10.1016/s0031-9384(98)00145-0.Search in Google Scholar
Maguire, M. and Maguire, G. (2019). Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Rev. Neurosci. 30: 179–201, https://doi.org/10.1515/revneuro-2018-0024.Search in Google Scholar PubMed
McCormick, C.M., Smith, K., Baumbach, J.L., de Lima, A.P.N., Shaver, M., Hodges, T.E., Marcolin, M.L., and Ismail, N. (2020). Adolescent social instability stress leads to immediate and lasting sex-specific changes in the neuroendocrine-immune-gut axis in rats. Horm. Behav. 126: 104845, https://doi.org/10.1016/j.yhbeh.2020.104845.Search in Google Scholar PubMed
McEwen, B.S. (1991). Stressful experience, brain and emotions: developmental, genetic, and hormonal influences. In: Gazzaniga, M.S. (Ed.), The cognitive neurosciences. Cambridge: MIT Press, pp. 1117–1151.Search in Google Scholar
McVey Neufeld, K.A., Kay, S., and Bienenstock, J. (2018). Mouse strain affects behavioral and neuroendocrine stress responses following administration of probiotic Lactobacillus rhamnosus JB-1 or traditional antidepressant fluoxetine. Front. Neurosci. 12: 294, https://doi.org/10.3389/fnins.2018.00294.Search in Google Scholar PubMed PubMed Central
Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., Bisson, J.F., Rougeot, C., Pichelin, M., Cazaubiel, M., et al.. (2011). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 105: 755–764, https://doi.org/10.1017/s0007114510004319.Search in Google Scholar
Mika, A., Day, H.E., Martinez, A., Rumian, N.L., Greenwood, B.N., Chichlowski, M., Berg, B.M., and Fleshner, M. (2017). Early life diets with prebiotics and bioactive milk fractions attenuate the impact of stress on learned helplessness behaviours and alter gene expression within neural circuits important for stress resistance. Eur. J. Neurosci. 45: 342–357, https://doi.org/10.1111/ejn.13444.Search in Google Scholar PubMed
Mindus, C., Ellis, J., van Staaveren, N., and Harlander-Matauschek, A. (2021). Lactobacillus-based probiotics reduce the adverse effects of stress in rodents: a meta-analysis. Front. Behav. Neurosci. 15: 642757, https://doi.org/10.3389/fnbeh.2021.642757.Search in Google Scholar PubMed PubMed Central
Motta, S.C., Goto, M., Gouveia, F.V., Baldo, M.V., Canteras, N.S., and Swanson, L.W. (2009). Dissecting the brain’s fear system reveals the hypothalamus is critical for responding in subordinate conspecific intruders. Proc. Natl. Acad. Sci. U.S.A. 106: 4870–4875, https://doi.org/10.1073/pnas.0900939106.Search in Google Scholar PubMed PubMed Central
Moya-Perez, A., Perez-Villalba, A., Benítez-Páez, A., Campillo, I., and Sanz, Y. (2017). Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice. Brain Behav. Immun. 65: 43–56, https://doi.org/10.1016/j.bbi.2017.05.011.Search in Google Scholar PubMed
Myles, E.M., O’Leary, M.E., Smith, R., MacPherson, C.W., Oprea, A., Melanson, E.H., Tompkins, T.A., and Perrot, T.S. (2020). Supplementation with combined Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 across development reveals sex differences in physiological and behavioural effects of western diet in Long-Evans rats. Microorganisms 8: 1527, https://doi.org/10.3390/microorganisms8101527.Search in Google Scholar PubMed PubMed Central
Natale, N.R., Kent, M., Fox, N., Vavra, D., and Lambert, K. (2021). Neurobiological effects of a probiotic-supplemented diet in chronically stressed male Long-Evans rats: evidence of enhanced resilience. IBRO Neurosci. Rep. 11: 207–215, https://doi.org/10.1016/j.ibneur.2021.10.004.Search in Google Scholar PubMed PubMed Central
Naveed, M., Zhou, Q.G., Xu, C., Taleb, A., Meng, F., Ahmed, B., Zhang, Y., Fukunaga, K., and Han, F. (2021). Gut-brain axis: a matter of concern in neuropsychiatric disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 104: 110051, https://doi.org/10.1016/j.pnpbp.2020.110051.Search in Google Scholar PubMed
Niu, Y., Liang, S., Wang, T., Hu, X., Li, W., Wu, X., and Jin, F. (2020). Pre-gestational intake of Lactobacillus helveticus NS8 has anxiolytic effects in adolescent Sprague Dawley offspring. Brain Behav. 10: e01714, https://doi.org/10.1002/brb3.1714.Search in Google Scholar PubMed PubMed Central
Ohland, C.L., Kish, L., Bell, H., Thiesen, A., Hotte, N., Pankiv, E., and Madsen, K.L. (2013). Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology 38: 1738–1747, https://doi.org/10.1016/j.psyneuen.2013.02.008.Search in Google Scholar PubMed
Park, K., Park, S., Nagappan, A., Ray, N., Kim, J., Yoon, S., and Moon, Y. (2021). Probiotic Escherichia coli ameliorates antibiotic-associated anxiety responses in mice. Nutrients 13: 811, https://doi.org/10.3390/nu13030811.Search in Google Scholar PubMed PubMed Central
Peng, H.H., Tsai, T.C., Huang, W.Y., Wu, H.M., and Hsu, K.S. (2019). Probiotic treatment restores normal developmental trajectories of fear memory retention in maternally separated infant rats. Neuropharmacology 153: 53–62, https://doi.org/10.1016/j.neuropharm.2019.04.026.Search in Google Scholar PubMed
Ramalho, J.B., Soares, M.B., Spiazzi, C.C., Bicca, D.F., Soares, V.M., Pereira, J.G., da Silva, W.P., Sehn, C.P., and Cibin, F.W.S. (2019). In Vitro probiotic and antioxidant potential of Lactococcus lactis subsp. cremoris LL95 and its effect in mice behaviour. Nutrients 11: 901, https://doi.org/10.3390/nu11040901.Search in Google Scholar PubMed PubMed Central
Reis, D.J., Ilardi, S.S., and Punt, S.E.W. (2018). The anxiolytic effect of probiotics: a systematic review and meta-analysis of the clinical and preclinical literature. PLoS One 13: e0199041, https://doi.org/10.1371/journal.pone.0199041.Search in Google Scholar PubMed PubMed Central
Rios, A.C., Maurya, P.K., Pedrini, M., Zeni-Graiff, M., Asevedo, E., Mansur, R.B., Wieck, A., Grassi-Oliveira, R., McIntyre, R.S., Hayashi, M.A.F., et al.. (2017). Microbiota abnormalities and the therapeutic potential of probiotics in the treatment of mood disorders. Rev. Neurosci. 28: 739–749, https://doi.org/10.1515/revneuro-2017-0001.Search in Google Scholar PubMed
Rodriguez, M., Ceric, F., Murgas, P., Harland, B., Torrealba, F., and Contreras, M. (2019). Interoceptive insular cortex mediates both innate fear and contextual threat conditioning to predator odor. Front. Behav. Neurosci. 13: 283, https://doi.org/10.3389/fnbeh.2019.00283.Search in Google Scholar PubMed PubMed Central
Sasmita, A.O. (2019). Modification of the gut microbiome to combat neurodegeneration. Rev. Neurosci. 30: 795–805, https://doi.org/10.1515/revneuro-2019-0005.Search in Google Scholar PubMed
Savignac, H.M., Kiely, B., Dinan, T.G., and Cryan, J.F. (2014). Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neuro Gastroenterol. Motil. 26: 1615–1627, https://doi.org/10.1111/nmo.12427.Search in Google Scholar PubMed
Savignac, H.M., Tramullas, M., Kiely, B., Dinan, T.G., and Cryan, J.F. (2015). Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav. Brain Res. 287: 59–72, https://doi.org/10.1016/j.bbr.2015.02.044.Search in Google Scholar PubMed
Savignac, H.M., Couch, Y., Stratford, M., Bannerman, D.M., Tzortzis, G., Anthony, D.C., and Burnet, P.W.J. (2016). Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice. Brain Behav. Immun. 52: 120–131, https://doi.org/10.1016/j.bbi.2015.10.007.Search in Google Scholar PubMed PubMed Central
Schmidt, K., Cowen, P.J., Harmer, C.J., Tzortzis, G., Errington, S., and Burnet, P.W. (2015). Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology (Berlin) 232: 1793–1801, https://doi.org/10.1007/s00213-014-3810-0.Search in Google Scholar PubMed PubMed Central
Sharma, R., Gupta, D., Mehrotra, R., and Mago, P. (2021). Psychobiotics: the next-generation probiotics for the brain. Curr. Microbiol. 78: 449–463, https://doi.org/10.1007/s00284-020-02289-5.Search in Google Scholar PubMed
Skonieczna-Zydecka, K., Marlicz, W., Misera, A., Koulaouzidis, A., and Łoniewski, I. (2018). Microbiome- the missing link in the gut-brain axis: focus on its role in gastrointestinal and mental health. J. Clin. Med. 7: 521, https://doi.org/10.3390/jcm7120521.Search in Google Scholar PubMed PubMed Central
Soto, A., Martín, V., Jiménez, E., Mader, I., Rodríguez, J.M., and Fernández, L. (2014). Lactobacilli and Bifidobacteria in human breast milk: influence of antibiotherapy and other host and clinical factors. J. Pediatr. Gastroenterol. Nutr. 59: 78–88, https://doi.org/10.1097/mpg.0000000000000347.Search in Google Scholar PubMed PubMed Central
Steenbergen, L., Sellaro, R., van Hemert, S., Bosch, J.A., and Colzato, L.S. (2015). A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav. Immun. 48: 258–264, https://doi.org/10.1016/j.bbi.2015.04.003.Search in Google Scholar PubMed
Stenman, L.K., Patterson, E., Meunier, J., Roman, F.J., and Lehtinen, M.J. (2020). Strain specific stress-modulating effects of candidate probiotics: a systematic screening in a mouse model of chronic restraint stress. Behav. Brain Res. 379: 112376, https://doi.org/10.1016/j.bbr.2019.112376.Search in Google Scholar PubMed
Stilling, R.M., Dinan, T.G., and Cryan, J.F. (2014). Microbial genes, brain and behaviour- epigenetic regulation of the gut-brain axis. Gene Brain Behav. 13: 69–86, https://doi.org/10.1111/gbb.12109.Search in Google Scholar PubMed
Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X.N., Kubo, C., and Koga, Y. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 558: 263–275, https://doi.org/10.1113/jphysiol.2004.063388.Search in Google Scholar PubMed PubMed Central
Sylvia, K.E. and Demas, G.E. (2018). A gut feeling: microbiome-brain-immune interactions modulate social and affective behaviors. Horm. Behav. 99: 41–49, https://doi.org/10.1016/j.yhbeh.2018.02.001.Search in Google Scholar PubMed PubMed Central
Szklany, K., Wopereis, H., de Waard, C., van Wageningen, T., An, R., van Limpt, K., Knol, J., Garssen, J., Knippels, L.M.J., Belzer, C., et al.. (2020). Supplementation of dietary non-digestible oligosaccharides from birth onwards improve social and reduce anxiety-like behaviour in male BALB/c mice. Nutr. Neurosci. 23: 896–910, https://doi.org/10.1080/1028415x.2019.1576362.Search in Google Scholar
Taibi, A. and Comelli, E.M. (2014). Practical approaches to probiotics use. Appl. Physiol. Nutr. Metabol. 39: 980–986, https://doi.org/10.1139/apnm-2013-0490.Search in Google Scholar PubMed
Takada, M., Nishida, K., Kataoka-Kato, A., Gondo, Y., Ishikawa, H., Suda, K., Kawai, M., Hoshi, R., Watanabe, O., Igarashi, T., et al.. (2016). Probiotic Lactobacillus casei strain Shirota relieves stress-associated symptoms by modulating the gut-brain interaction in human and animal models. Neuro Gastroenterol. Motil. 28: 1027–1036, https://doi.org/10.1111/nmo.12804.Search in Google Scholar PubMed
Tan, A.H., Hor, J.W., Chong, C.W., and Lim, S.Y. (2020). Probiotics for Parkinson’s disease: current evidence and future directions. JGH Open 5: 414–419, https://doi.org/10.1002/jgh3.12450.Search in Google Scholar PubMed PubMed Central
Tan, Q., Orsso, C.E., Deehan, E.C., Kung, J.Y., Tun, H.M., Wine, E., Madsen, K.L., Zwaigenbaum, L., and Haqq, A.M. (2021). Probiotics, prebiotics, synbiotics, and fecal microbiota transplantation in the treatment of behavioral symptoms of autism spectrum disorder: a systematic review. Autism Res. 14: 1820–1836, https://doi.org/10.1002/aur.2560.Search in Google Scholar PubMed
Tarr, A.J., Galley, J.D., Fisher, S.E., Chichlowski, M., Berg, B.M., and Bailey, M.T. (2015). The prebiotics 3’sialyllactose and 6’sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations: evidence for effects on the gut-brain axis. Brain Behav. Immun. 50: 166–177, https://doi.org/10.1016/j.bbi.2015.06.025.Search in Google Scholar PubMed PubMed Central
Taylor, A.M. and Holscher, H.D. (2020). A review of dietary and microbial connections to depression, anxiety, and stress. Nutr. Neurosci. 23: 237–250, https://doi.org/10.1080/1028415x.2018.1493808.Search in Google Scholar PubMed
Teitelbaum, J.E. and Walker, W.A. (2002). Nutritional impact of pre- and probiotics as protective gastrointestinal organisms. Annu. Rev. Nutr. 22: 107–138, https://doi.org/10.1146/annurev.nutr.22.110901.145412.Search in Google Scholar PubMed
Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., Guyonnet, D., Legrain-Raspaud, S., Trotin, B., Naliboff, B., et al.. (2013). Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144: 1394–1401, https://doi.org/10.1053/j.gastro.2013.02.043.Search in Google Scholar PubMed PubMed Central
Tillmann, S. and Wegener, G. (2019). Probiotics reduce risk-taking behavior in the elevated plus maze in the Flinders sensitive line rat model of depression. Behav. Brain Res. 359: 755–762, https://doi.org/10.1016/j.bbr.2018.08.025.Search in Google Scholar PubMed
Tremblay, A., Lingrand, L., Maillard, M., Feuz, B., and Tompkins, T.A. (2021). The effects of psychobiotics on the microbiota-gut-brain axis in early-life stress and neuropsychiatric disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 105: 110142, https://doi.org/10.1016/j.pnpbp.2020.110142.Search in Google Scholar PubMed
van der Kooy, D., Koda, L.Y., McGinty, J.F., Gerfen, C.R., and Bloom, F.E. (1984). The organization of projections from the cortex, amygdala and hypothalamus to the nucleus of the solitary tract in rat. J. Comp. Neurol. 224: 1–24, https://doi.org/10.1002/cne.902240102.Search in Google Scholar PubMed
Vanhaecke, T., Aubert, P., Grohard, P.A., Durand, T., Hulin, P., Paul-Gilloteaux, P., Fournier, A., Docagne, F., Ligneul, A., Fressange-Mazda, C., et al.. (2017). L. fermentum CECT 5716 prevents stress- induced intestinal barrier dysfunction in newborn rats. Neuro Gastroenterol. Motil. 29: e13069, https://doi.org/10.1111/nmo.13069.Search in Google Scholar PubMed
Verbeek, E., Dicksved, J., and Keeling, L. (2021). Supplementation of Lactobacillus early in life alters attention bias to threat in piglets. Sci. Rep. 11: 10130, https://doi.org/10.1038/s41598-021-89560-2.Search in Google Scholar
Vianna, D.M. and Brandão, M.L. (2003). Anatomical connections of the periaqueductal gray: specific neural substrates for different kinds of fear. Braz. J. Med. Biol. Res. 36: 557–566, https://doi.org/10.1590/s0100-879x2003000500002.Search in Google Scholar
Wang, H., Lee, I.S., Braun, C., and Enck, P. (2016). Effect of probiotics on central nervous system functions in animals and humans: a systematic review. J. Neuro Gastroenterol. Motil. 22: 589–605, https://doi.org/10.5056/jnm16018.Search in Google Scholar
Wilensky, A.E., Schafe, G.E., Kristensen, M.P., and LeDoux, J.E. (2006). Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J. Neurosci. 26: 12387–12396, https://doi.org/10.1523/jneurosci.4316-06.2006.Search in Google Scholar
Wolever, T.M.S., Rahn, M., Dioum, E.H., Jenkins, A.L., Ezatagha, A., Campbell, J.E., and Chu, Y. (2021). Effect of oat beta-glucan on affective and physical feeling states in healthy adults: evidence for reduced headache, fatigue, anxiety and limb/joint pains. Nutrients 13: 1534, https://doi.org/10.3390/nu13051534.Search in Google Scholar
Yaeshima, T., Takahashi, S., Ishibashi, N., and Shimamura, S. (1996). Identification of Bifidobacteria from dairy products and evaluation of a microplate hybridization method. Int. J. Food Microbiol. 30: 303–313, https://doi.org/10.1016/0168-1605(96)00956-7.Search in Google Scholar
Yang, B., Wei, J., Ju, P., and Chen, J. (2019). Effects of regulating intestinal microbiota on anxiety symptoms: a systematic review. Gen. Psychiatr. 32: e100056, https://doi.org/10.1136/gpsych-2019-100056.Search in Google Scholar PubMed PubMed Central
Yang, Y., Zhao, S., Yang, X., Li, W., Si, J., and Yang, X. (2022). The antidepressant potential of lactobacillus casei in the postpartum depression rat model mediated by the microbiota-gut-brain axis. Neurosci. Lett. 774: 136474, https://doi.org/10.1016/j.neulet.2022.136474.Search in Google Scholar PubMed
Yu, L., Han, X., Cen, S., Duan, H., Feng, S., Xue, Y., Tian, F., Zhao, J., Zhang, H., Zhai, Q., et al.. (2020). Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota. Microbiol. Res. 233: 126409, https://doi.org/10.1016/j.micres.2020.126409.Search in Google Scholar PubMed
Yun, S.W., Kim, J.K., Han, M.J., and Kim, D.H. (2021). Lacticaseibacillus paracasei NK112 mitigates Escherichia coli-induced depression and cognitive impairment in mice by regulating IL-6 expression and gut microbiota. Benef. Microbes 12: 541–551, https://doi.org/10.3920/bm2020.0109.Search in Google Scholar
Zhao, Y., Yang, G., Zhao, Z., Wang, C., Duan, C., Gao, L., and Li, S. (2020). Antidepressant-like effects of Lactobacillus plantarum DP189 in a corticosterone-induced rat model of chronic stress. Behav. Brain Res. 395: 112853, https://doi.org/10.1016/j.bbr.2020.112853.Search in Google Scholar PubMed
Zhou, B., Jin, G., Pang, X., Mo, Q., Bao, J., Liu, T., Wu, J., Xie, R., Liu, X., Liu, J., et al.. (2022). Lactobacillus rhamnosus GG colonization in early life regulates gut-brain axis and relieves anxiety-like behavior in adulthood. Pharmacol. Res. 177: 106090, https://doi.org/10.1016/j.phrs.2022.106090.Search in Google Scholar PubMed
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Intranasal application of stem cells and their derivatives as a new hope in the treatment of cerebral hypoxia/ischemia: a review
- Neurofeedback and neural self-regulation: a new perspective based on allostasis
- Acute cerebrovascular events in severe and nonsevere COVID-19 patients: a systematic review and meta-analysis
- mRNA editing of kainate receptor subunits: what do we know so far?
- Understanding mitochondria and the utility of optimization as a canonical framework for identifying and modeling mitochondrial pathways
- Probiotic effects on anxiety-like behavior in animal models
Articles in the same Issue
- Frontmatter
- Intranasal application of stem cells and their derivatives as a new hope in the treatment of cerebral hypoxia/ischemia: a review
- Neurofeedback and neural self-regulation: a new perspective based on allostasis
- Acute cerebrovascular events in severe and nonsevere COVID-19 patients: a systematic review and meta-analysis
- mRNA editing of kainate receptor subunits: what do we know so far?
- Understanding mitochondria and the utility of optimization as a canonical framework for identifying and modeling mitochondrial pathways
- Probiotic effects on anxiety-like behavior in animal models