Abstract
The field of neurofeedback training (NFT) has seen growing interest and an expansion of scope, resulting in a steadily increasing number of publications addressing different aspects of NFT. This development has been accompanied by a debate about the underlying mechanisms and expected outcomes. Recent developments in the understanding of psychophysiological regulation have cast doubt on the validity of control systems theory, the principal framework traditionally used to characterize NFT. The present article reviews the theoretical and empirical aspects of NFT and proposes a predictive framework based on the concept of allostasis. Specifically, we conceptualize NFT as an adaptation to changing contingencies. In an allostasis four-stage model, NFT involves (a) perceiving relations between demands and set-points, (b) learning to apply collected patterns (experience) to predict future output, (c) determining efficient set-points, and (d) adapting brain activity to the desired (“set”) state. This model also identifies boundaries for what changes can be expected from a neurofeedback intervention and outlines a time frame for such changes to occur.
Funding source: National Institute of Mental Health
Award Identifier / Grant number: R01MH112558
-
Author contributions: AM conceived and developed the idea and frame of the manuscript. AM and FE developed the model and AK provided feedback on it. AM wrote the first draft of the manuscript and FE and AK commented on it and revised it. All authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: AM and FE received no financial support for the research, authorship, and/or publication of this article. AK was supported by grant R01MH112558, by the National Institute of Mental Health.
-
Conflict of interest statement: None.
References
Arduin, P.J., Fregnac, Y., Shulz, D.E., and Ego-Stengel, V. (2013). “Master” neurons induced by operant conditioning in rat motor cortex during a brain-machine interface task. J. Neurosci. 33: 8308–8320, https://doi.org/10.1523/jneurosci.2744-12.2013.Search in Google Scholar
Arns, M., de Ridder, S., Strehl, U., Breteler, M., and Coenen, A. (2009). Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clin. EEG Neurosci. 40: 180–189, https://doi.org/10.1177/155005940904000311.Search in Google Scholar PubMed
Awh, E. and Gehring, W.J. (1999). The anterior cingulate cortex lends a hand in response selection. Nat. Neurosci. 2: 853, https://doi.org/10.1038/13145.Search in Google Scholar PubMed
Bagherzadeh, Y., Baldauf, D., Pantazis, D., and Desimone, R. (2020). Alpha synchrony and the neurofeedback control of spatial attention. Neuron 105: 577–587 e575, https://doi.org/10.1016/j.neuron.2019.11.001.Search in Google Scholar PubMed
Banfield, J.F., Wyland, C.L., Macrae, C.N., Münte, T.F., and Heatherton, T.F. (2004). The cognitive neuroscience of self-regulation. In: Handbook of self-regulation: research, theory, and applications. The Guilford Press, New York, NY, US, pp. 62–83.Search in Google Scholar
Barrett, L.F., Quigley, K.S., and Hamilton, P. (2016). An active inference theory of allostasis and interoception in depression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371: 20160011, https://doi.org/10.1098/rstb.2016.0011.Search in Google Scholar PubMed PubMed Central
Baumeister, R.F. and Heatherton, T.F. (1996). Self-regulation failure: an overview. Psychol. Inq. 7: 1–15, https://doi.org/10.1207/s15327965pli0701_1.Search in Google Scholar
Bissiere, S., Humeau, Y., and Luthi, A. (2003). Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nat. Neurosci. 6: 587–592, https://doi.org/10.1038/nn1058.Search in Google Scholar PubMed
Blair, C. (2016). Developmental science and executive function. Curr. Dir. Psychol. Sci. 25: 3–7, https://doi.org/10.1177/0963721415622634.Search in Google Scholar PubMed PubMed Central
Bluschke, A., Broschwitz, F., Kohl, S., Roessner, V., and Beste, C. (2016). The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback. Sci. Rep. 6: 31178, https://doi.org/10.1038/srep31178.Search in Google Scholar PubMed PubMed Central
Botvinick, M., Nystrom, L.E., Fissell, K., Carter, C.S., and Cohen, J.D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402: 179–181, https://doi.org/10.1038/46035.Search in Google Scholar PubMed
Bush, G., Vogt, B.A., Holmes, J., Dale, A.M., Greve, D., Jenike, M.A., and Rosen, B.R. (2002). Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc. Natl. Acad. Sci. U. S. A. 99: 523–528, https://doi.org/10.1073/pnas.012470999.Search in Google Scholar PubMed PubMed Central
Cannon, R., Lubar, J., Congedo, M., Thornton, K., Towler, K., and Hutchens, T. (2007). The effects of neurofeedback training in the cognitive division of the anterior cingulate gyrus. Int. J. Neurosci. 117: 337–357, https://doi.org/10.1080/00207450500514003.Search in Google Scholar PubMed
Carter, C.S., Braver, T.S., Barch, D.M., Botvinick, M.M., Noll, D., and Cohen, J.D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280: 747–749, https://doi.org/10.1126/science.280.5364.747.Search in Google Scholar PubMed
Carter, C.S., Macdonald, A.M., Botvinick, M., Ross, L.L., Stenger, V.A., Noll, D., and Cohen, J.D. (2000). Parsing executive processes: strategic versus evaluative functions of the anterior cingulate cortex. Proc. Natl. Acad. Sci. U. S. A. 97: 1944–1948, https://doi.org/10.1073/pnas.97.4.1944.Search in Google Scholar PubMed PubMed Central
Clark, V.P. and Parasuraman, R. (2014). Neuroenhancement: enhancing brain and mind in health and in disease. Neuroimage 85: 889–894, https://doi.org/10.1016/j.neuroimage.2013.08.071.Search in Google Scholar PubMed
Coben, R., Linden, M., and Myers, T.E. (2010). Neurofeedback for autistic spectrum disorder: a review of the literature. Appl. Psychophysiol. Biofeedback 35: 83–105, https://doi.org/10.1007/s10484-009-9117-y.Search in Google Scholar PubMed
Cohen, E.J., Quarta, E., Bravi, R., Granato, A., and Minciacchi, D. (2017). Neural plasticity and network remodeling: from concepts to pathology. Neuroscience 344: 326–345, https://doi.org/10.1016/j.neuroscience.2016.12.048.Search in Google Scholar PubMed
Colcombe, S.J., Erickson, K.I., Scalf, P.E., Kim, J.S., Prakash, R., McAuley, E., Elavsky, S., Marquez, D.X., Hu, L., and Kramer, A.F. (2006). Aerobic exercise training increases brain volume in aging humans. J. Gerontol. Biol. Med. Sci. 61: 1166–1170, https://doi.org/10.1093/gerona/61.11.1166.Search in Google Scholar PubMed
Collura, T.F. (2014). Technical foundations of neurofeedback. Taylor & Francis, New York, US.10.4324/9780203795132Search in Google Scholar
Cooper, S.J. (2008). From Claude Bernard to Walter Cannon. Emergence of the concept of homeostasis. Appetite 51: 419–427, https://doi.org/10.1016/j.appet.2008.06.005.Search in Google Scholar PubMed
Davelaar, E.J. (2020). A multi-stage theory of neurofeedback learning. In: Schmorrow, D.D. and Fidopiastis, C.M. (Eds.), Augmented cognition. Theoretical and technological approaches. Springer International Publishing, Cham, pp. 118–128.10.1007/978-3-030-50353-6_9Search in Google Scholar
Davelaar, E.J., Barnby, J.M., Almasi, S., and Eatough, V. (2018). Differential subjective experiences in learners and non-learners in frontal alpha neurofeedback: piloting a mixed-method approach. Front. Hum. Neurosci. 12: 402, https://doi.org/10.3389/fnhum.2018.00402.Search in Google Scholar
de Ridder, D.T.D. and de Wit, J.B.F. (2006). Self-regulation in health behavior: concepts, theories, and central issues. In: Self-regulation in health behavior. Wiley, Chichester, West Sussex, UK, pp. 1–23.10.1002/9780470713150.ch1Search in Google Scholar
Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., and May, A. (2004). Neuroplasticity: changes in grey matter induced by training. Nature 427: 311–312, https://doi.org/10.1038/427311a.Search in Google Scholar
Draganski, B., Gaser, C., Kempermann, G., Kuhn, H.G., Winkler, J., Buchel, C., and May, A. (2006). Temporal and spatial dynamics of brain structure changes during extensive learning. J. Neurosci. 26: 6314–6317, https://doi.org/10.1523/jneurosci.4628-05.2006.Search in Google Scholar
Duncan, J. and Owen, A.M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23: 475–483, https://doi.org/10.1016/s0166-2236(00)01633-7.Search in Google Scholar
Dworkin, B.R. (1986). Learning and long-term physiological regulation. In: Davidson, R.J., Schwartz, G.E., and Shapiro, D. (Eds.), Consciousness and self-regulation: Advances in research and theory. Springer US, Boston, MA, pp. 163–182.10.1007/978-1-4757-0629-1_7Search in Google Scholar
Elliott, R. and Dolan, R.J. (1998). Neural response during preference and memory judgments for subliminally presented stimuli: a functional neuroimaging study. J. Neurosci. 18: 4697–4704, https://doi.org/10.1523/jneurosci.18-12-04697.1998.Search in Google Scholar
Emmert, K., Kopel, R., Sulzer, J., Bruhl, A.B., Berman, B.D., Linden, D.E.J., Horovitz, S.G., Breimhorst, M., Caria, A., Frank, S., et al.. (2016). Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: how is brain regulation mediated? Neuroimage 124: 806–812, https://doi.org/10.1016/j.neuroimage.2015.09.042.Search in Google Scholar PubMed
Feldman, D.E. (2012). The spike-timing dependence of plasticity. Neuron 75: 556–571, https://doi.org/10.1016/j.neuron.2012.08.001.Search in Google Scholar PubMed PubMed Central
Fishbach, A. and Shah, J.Y. (2006). Self-control in action: implicit dispositions toward goals and away from temptations. J. Pers. Soc. Psychol. 90: 820–832, https://doi.org/10.1037/0022-3514.90.5.820.Search in Google Scholar PubMed
Friston, K. and Kiebel, S. (2009). Predictive coding under the free-energy principle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364: 1211–1221, https://doi.org/10.1098/rstb.2008.0300.Search in Google Scholar PubMed PubMed Central
Gallistel, C.R. and Matzel, L.D. (2013). The neuroscience of learning: beyond the Hebbian synapse. Annu. Rev. Psychol. 64: 169–200, https://doi.org/10.1146/annurev-psych-113011-143807.Search in Google Scholar PubMed
Gaume, A., Vialatte, A., Mora-Sánchez, A., Ramdani, C., and Vialatte, F.B. (2016). A psychoengineering paradigm for the neurocognitive mechanisms of biofeedback and neurofeedback. Neurosci. Biobehav. Rev. 68: 891–910, https://doi.org/10.1016/j.neubiorev.2016.06.012.Search in Google Scholar PubMed
Gehring, W.J. and Fencsik, D.E. (2001). Functions of the medial frontal cortex in the processing of conflict and errors. J. Neurosci. 21: 9430–9437, https://doi.org/10.1523/jneurosci.21-23-09430.2001.Search in Google Scholar
Gehring, W.J. and Knight, R.T. (2000). Prefrontal-cingulate interactions in action monitoring. Nat. Neurosci. 3: 516–520, https://doi.org/10.1038/74899.Search in Google Scholar PubMed
Gerdes, L., Gerdes, P., Lee, S.W., and Tegeler, C.H. (2013). HIRREM: a noninvasive, allostatic methodology for relaxation and auto-calibration of neural oscillations. Brain Behav. 3: 193–205, https://doi.org/10.1002/brb3.116.Search in Google Scholar PubMed PubMed Central
Gershman, S.J. and Daw, N.D. (2017). Reinforcement learning and episodic memory in humans and animals: an integrative framework. Annu. Rev. Psychol. 68: 101–128, https://doi.org/10.1146/annurev-psych-122414-033625.Search in Google Scholar PubMed PubMed Central
Gerstner, W. (2011). Hebbian learning and plasticity. In: Arbib, M.A. and Bonaiuto, J.J. (Eds.), From neuron to cognition via computational neuroscience. MIT Press Cambridge, London, pp. 0–25.Search in Google Scholar
Ghaziri, J., Tucholka, A., Larue, V., Blanchette-Sylvestre, M., Reyburn, G., Gilbert, G., Levesque, J., and Beauregard, M. (2013). Neurofeedback training induces changes in white and gray matter. Clin. EEG Neurosci. 44: 265–272, https://doi.org/10.1177/1550059413476031.Search in Google Scholar PubMed
Gollwitzer, P.M. and Brandstätter, V. (1997). Implementation intentions and effective goal pursuit. J. Pers. Soc. Psychol. 73: 186, https://doi.org/10.1037/0022-3514.73.1.186.Search in Google Scholar
Gopal, M. (2002). Control systems: principles and design. McGraw-Hill Education (India) Pvt Limited, New Delhi.Search in Google Scholar
Gruzelier, J. and Egner, T. (2005). Critical validation studies of neurofeedback. Child Adolesc. Psychiatr. Clin. North Am. 14: 83–104, https://doi.org/10.1016/j.chc.2004.07.002.Search in Google Scholar PubMed
Gruzelier, J.H. and Egner, T. (2004). Physiological self-regulation: biofeedback and neurofeedback. In: Musical excellence. Oxford University Press, London, UK, pp. 197–219.10.1093/acprof:oso/9780198525356.003.0011Search in Google Scholar
Gruzelier, J.H. (2014a). EEG-neurofeedback for optimising performance. I: a review of cognitive and affective outcome in healthy participants. Neurosci. Biobehav. Rev. 44: 124–141, https://doi.org/10.1016/j.neubiorev.2013.09.015.Search in Google Scholar PubMed
Gruzelier, J.H. (2014b). EEG-neurofeedback for optimising performance. II: creativity, the performing arts and ecological validity. Neurosci. Biobehav. Rev. 44: 142–158, https://doi.org/10.1016/j.neubiorev.2013.11.004.Search in Google Scholar PubMed
Gruzelier, J.H. (2014c). EEG-neurofeedback for optimising performance. III: a review of methodological and theoretical considerations. Neurosci. Biobehav. Rev. 44: 159–182, https://doi.org/10.1016/j.neubiorev.2014.03.015.Search in Google Scholar PubMed
Hampson, M., Ruiz, S., and Ushiba, J. (2020). Neurofeedback. Neuroimage 218: 116473, https://doi.org/10.1016/j.neuroimage.2019.116473.Search in Google Scholar PubMed
Hare, T.A., Camerer, C.F., and Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324: 646–648, https://doi.org/10.1126/science.1168450.Search in Google Scholar PubMed
Hebb, D.O. (1949). The organization of behavior, Vol. 65. Wiley, New York.Search in Google Scholar
Hensel, H. (1981). Thermoreception and temperature regulation. Monogr. Physiol. Soc. 38: 1–321.10.1007/978-1-4684-7697-2_8Search in Google Scholar
Hernandez, M., Denburg, N.L., and Tranel, D. (2009). A neuropsychological perspective on the role of the prefrontal cortex in reward processing and decision-making. In: Dreher, J.-C. and Tremblay, L. (Eds.), Handbook of reward and decision making. Academic Press, New York, pp. 291–306.10.1016/B978-0-12-374620-7.00013-3Search in Google Scholar
Hinterberger, T., Veit, R., Strehl, U., Trevorrow, T., Erb, M., Kotchoubey, B., Flor, H., and Birbaumer, N. (2003). Brain areas activated in fMRI during self-regulation of slow cortical potentials (SCPs). Exp. Brain Res. 152: 113–122, https://doi.org/10.1007/s00221-003-1515-4.Search in Google Scholar PubMed
Hofmann, W., Schmeichel, B.J., and Baddeley, A.D. (2012). Executive functions and self-regulation. Trends Cognit. Sci. 16: 174–180, https://doi.org/10.1016/j.tics.2012.01.006.Search in Google Scholar PubMed
Hohenfeld, C., Nellessen, N., Dogan, I., Kuhn, H., Muller, C., Papa, F., Ketteler, S., Goebel, R., Heinecke, A., Shah, N.J., et al.. (2017). Cognitive improvement and brain changes after real-time functional MRI neurofeedback training in healthy elderly and prodromal Alzheimer’s disease. Front. Neurol. 8: 384, https://doi.org/10.3389/fneur.2017.00384.Search in Google Scholar PubMed PubMed Central
Hölzel, B.K., Carmody, J., Vangel, M., Congleton, C., Yerramsetti, S.M., Gard, T., and Lazar, S.W. (2011). Mindfulness practice leads to increases in regional brain gray matter density. Psychiatr. Res. 191: 36–43, https://doi.org/10.1016/j.pscychresns.2010.08.006.Search in Google Scholar PubMed PubMed Central
Hudak, J., Rosenbaum, D., Barth, B., Fallgatter, A.J., and Ehlis, A.C. (2018). Functionally disconnected: a look at how study design influences neurofeedback data and mechanisms in attention-deficit/hyperactivity disorder. PLoS One 13: e0200931, https://doi.org/10.1371/journal.pone.0200931.Search in Google Scholar PubMed PubMed Central
Hurley, K.M., Herbert, H., Moga, M.M., and Saper, C.B. (1991). Efferent projections of the infralimbic cortex of the rat. J. Comp. Neurol. 308: 249–276, https://doi.org/10.1002/cne.903080210.Search in Google Scholar PubMed
Ilg, R., Wohlschlager, A.M., Gaser, C., Liebau, Y., Dauner, R., Woller, A., Zimmer, C., Zihl, J., and Muhlau, M. (2008). Gray matter increase induced by practice correlates with task-specific activation: a combined functional and morphometric magnetic resonance imaging study. J. Neurosci. 28: 4210–4215, https://doi.org/10.1523/jneurosci.5722-07.2008.Search in Google Scholar PubMed PubMed Central
Kaas, J.H. (2001). Neural plasticity. In: Smelser, N.J. and Baltes, P.B. (Eds.), International encyclopedia of the social & behavioral sciences. Pergamon, Oxford, pp. 10542–10546.10.1016/B0-08-043076-7/03619-6Search in Google Scholar
Kamiya, J. (1962). Conditioned discrimination of the EEG alpha rhythm in humans. In: The western psychological. The Western Psychological, San Francisco, California.Search in Google Scholar
Kane, M.J., Bleckley, M.K., Conway, A.R., and Engle, R.W. (2001). A controlled-attention view of working-memory capacity. J. Exp. Psychol. Gen. 130: 169–183, https://doi.org/10.1037/0096-3445.130.2.169.Search in Google Scholar
Kanosue, K., Crawshaw, L.I., Nagashima, K., and Yoda, T. (2010). Concepts to utilize in describing thermoregulation and neurophysiological evidence for how the system works. Eur. J. Appl. Physiol. 109: 5–11, https://doi.org/10.1007/s00421-009-1256-6.Search in Google Scholar PubMed
Kiehl, K.A., Liddle, P.F., and Hopfinger, J.B. (2000). Error processing and the rostral anterior cingulate: an event-related fMRI study. Psychophysiology 37: 216–223, https://doi.org/10.1111/1469-8986.3720216.Search in Google Scholar
Kleckner, I.R., Zhang, J., Touroutoglou, A., Chanes, L., Xia, C., Simmons, W.K., Quigley, K.S., Dickerson, B.C., and Barrett, L.F. (2017). Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nat. Hum. Behav. 1: 0069, https://doi.org/10.1038/s41562-017-0069.Search in Google Scholar PubMed PubMed Central
Knutson, B., Westdorp, A., Kaiser, E., and Hommer, D. (2000). FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage 12: 20–27, https://doi.org/10.1006/nimg.2000.0593.Search in Google Scholar
Kober, S.E., Witte, M., Stangl, M., Väljamäe, A., Neuper, C., and Wood, G. (2015). Shutting down sensorimotor interference unblocks the networks for stimulus processing: an SMR neurofeedback training study. Clin. Neurophysiol. 126: 82–95, https://doi.org/10.1016/j.clinph.2014.03.031.Search in Google Scholar
Kolb, B., Gibb, R., and Robinson, T.E. (2003). Brain plasticity and behavior. Curr. Dir. Psychol. Sci. 12: 1–5, https://doi.org/10.1111/1467-8721.01210.Search in Google Scholar
Kringelbach, M.L. and Berridge, K.C. (2016). Neuroscience of reward, motivation, and drive. In: Recent developments in neuroscience research on human motivation. Emerald Group Publishing Limited, Bingley, UK, pp. 23–35.10.1108/S0749-742320160000019020Search in Google Scholar
Kulichenko, A.M., Fokina, Y.O., and Pavlenko, V.B. (2009). Changes in EEG rhythms and spike activity of brainstem dopaminergic neurons induced by neurofeedback sessions in cats. Neurophysiology 41: 196, https://doi.org/10.1007/s11062-009-9093-0.Search in Google Scholar
Landers, D.M., Petruzzello, S.J., Salazar, W., Crews, D.J., Kubitz, K.A., Gannon, T.L., and Han, M. (1991). The influence of electrocortical biofeedback on performance in pre-elite archers. Med. Sci. Sports Exerc. 23: 123–129, https://doi.org/10.1249/00005768-199101000-00018.Search in Google Scholar
LeBlanc, S.E. and Coughanowr, D. (2009). Process systems analysis and control. McGraw-Hill Education, New York.Search in Google Scholar
Levine, B., Stuss, D.T., Milberg, W.P., Alexander, M.P., Schwartz, M., and Macdonald, R. (1998). The effects of focal and diffuse brain damage on strategy application: evidence from focal lesions, traumatic brain injury and normal aging. J. Int. Neuropsychol. Soc. 4: 247–264, https://doi.org/10.1017/s1355617798002471.Search in Google Scholar
Liddle, P.F., Kiehl, K.A., and Smith, A.M. (2001). Event-related fMRI study of response inhibition. Hum. Brain Mapp. 12: 100–109, https://doi.org/10.1002/1097-0193(200102)12:2<100::aid-hbm1007>3.0.co;2-6.10.1002/1097-0193(200102)12:2<100::AID-HBM1007>3.0.CO;2-6Search in Google Scholar
Linhartova, P., Latalova, A., Kosa, B., Kasparek, T., Schmahl, C., and Paret, C. (2019). fMRI neurofeedback in emotion regulation: a literature review. Neuroimage 193: 75–92, https://doi.org/10.1016/j.neuroimage.2019.03.011.Search in Google Scholar
Luria, A.R. (1966). Higher cortical functions in man. Basic, New York.Search in Google Scholar
MacDonald, A.W., Cohen, J.D., Stenger, V.A., and Carter, C.S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288: 1835–1838, https://doi.org/10.1126/science.288.5472.1835.Search in Google Scholar
Marins, T., Rodrigues, E.C., Bortolini, T., Melo, B., Moll, J., and Tovar-Moll, F. (2019). Structural and functional connectivity changes in response to short-term neurofeedback training with motor imagery. Neuroimage 194: 283–290, https://doi.org/10.1016/j.neuroimage.2019.03.027.Search in Google Scholar
Markram, H., Gerstner, W., and Sjöström, P.J. (2011). A history of spike-timing-dependent plasticity. Front. Synaptic Neurosci. 3: 4, https://doi.org/10.3389/fnsyn.2011.00004.Search in Google Scholar
Mayeli, A., Misaki, M., Zotev, V., Tsuchiyagaito, A., Al Zoubi, O., Phillips, R., Smith, J., Stewart, J.L., Refai, H., Paulus, M.P., et al.. (2020). Self-regulation of ventromedial prefrontal cortex activation using real-time fMRI neurofeedback-Influence of default mode network. Hum. Brain Mapp. 41: 342–352, https://doi.org/10.1002/hbm.24805.Search in Google Scholar
McEntee, W.J. and Crook, T.H. (1993). Glutamate: its role in learning, memory, and the aging brain. Psychopharmacology 111: 391–401, https://doi.org/10.1007/bf02253527.Search in Google Scholar
McEwen, B.S. (2016). Chapter 5 – central role of the brain in stress and adaptation: allostasis, biological embedding, and cumulative change. In: Fink, G. (Ed.), Stress: concepts, cognition, emotion, and behavior. Academic Press, San Diego, pp. 39–55.10.1016/B978-0-12-800951-2.00005-4Search in Google Scholar
McEwen, B.S. and Wingfield, J.C. (2003). The concept of allostasis in biology and biomedicine. Horm. Behav. 43: 2–15, https://doi.org/10.1016/s0018-506x(02)00024-7.Search in Google Scholar
Menon, V., Adleman, N.E., White, C.D., Glover, G.H., and Reiss, A.L. (2001). Error-related brain activation during a Go/NoGo response inhibition task. Hum. Brain Mapp. 12: 131–143, https://doi.org/10.1002/1097-0193(200103)12:3<131::aid-hbm1010>3.0.co;2-c.10.1002/1097-0193(200103)12:3<131::AID-HBM1010>3.0.CO;2-CSearch in Google Scholar
Micoulaud-Franchi, J.A. and Fovet, T. (2018). A framework for disentangling the hyperbolic truth of neurofeedback: comment on Thibault and Raz (2017). Am. Psychol. 73: 933–935, https://doi.org/10.1037/amp0000340.Search in Google Scholar
Micoulaud Franchi, J.A., Jeunet, C., and Lotte, F. (2020). Neurofeedback: a challenge for integrative clinical neurophysiological studies. Neurophysiol. Clin. 50: 1–3, https://doi.org/10.1016/j.neucli.2020.01.001.Search in Google Scholar
Miller, E.K. (2000). The prefontral cortex and cognitive control. Nat. Rev. Neurosci. 1: 59–65, https://doi.org/10.1038/35036228.Search in Google Scholar
Miller, E.K. and Cohen, J.D. (2001). An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24: 167–202, https://doi.org/10.1146/annurev.neuro.24.1.167.Search in Google Scholar
Miller, J.D., Sanghera, M.K., and German, D.C. (1981). Mesencephalic dopaminergic unit activity in the behaviorally conditioned rat. Life Sci. 29: 1255–1263, https://doi.org/10.1016/0024-3205(81)90231-9.Search in Google Scholar
Miller, N.E. (1978). Biofeedback and visceral learning. Annu. Rev. Psychol. 29: 373–404, https://doi.org/10.1146/annurev.ps.29.020178.002105.Search in Google Scholar PubMed
Miller, R. (1981). Meaning and purpose in the intact brain: a philosophical, psychological, and biological account of conscious processes. Oxford University Press, New York City, US.Search in Google Scholar
Mirifar, A., Keil, A., Beckmann, J., and Ehrlenspiel, F. (2019). No effects of neurofeedback of beta band components on reaction time performance. J. Cognit. Enhanc. 3: 251–260, https://doi.org/10.1007/s41465-018-0093-0.Search in Google Scholar
Monastra, V.J. (2008). Quantitative electroencephalography and attention-deficit/hyperactivity disorder: implications for clinical practice. Curr. Psychiatr. Rep. 10: 432–438, https://doi.org/10.1007/s11920-008-0069-3.Search in Google Scholar PubMed
Moore, N.C. (2000). A review of EEG biofeedback treatment of anxiety disorders. Clin. Electroencephalogr. 31: 1–6, https://doi.org/10.1177/155005940003100105.Search in Google Scholar PubMed
Mulholland, T.B. (1984). Concepts of control in biofeedback. In: Elbert, T., Rockstroh, B., Lutzenberger, W., and Birbaumer, N. (Eds.), Self-regulation of the brain and behavior. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 277–295.10.1007/978-3-642-69379-3_20Search in Google Scholar
Munivenkatappa, A., Rajeswaran, J., Indira Devi, B., Bennet, N., and Upadhyay, N. (2014). EEG neurofeedback therapy: can it attenuate brain changes in TBI? NeuroRehabilitation 35: 481–484, https://doi.org/10.3233/nre-141140.Search in Google Scholar PubMed
Ninaus, M., Kober, S.E., Witte, M., Koschutnig, K., Stangl, M., Neuper, C., and Wood, G. (2013). Neural substrates of cognitive control under the belief of getting neurofeedback training. Front. Hum. Neurosci. 7: 914, https://doi.org/10.3389/fnhum.2013.00914.Search in Google Scholar PubMed PubMed Central
Niv, S. (2013). Clinical efficacy and potential mechanisms of neurofeedback. Pers. Indiv. Differ. 54: 676–686, https://doi.org/10.1016/j.paid.2012.11.037.Search in Google Scholar
Oblak, E.F., Lewis-Peacock, J.A., and Sulzer, J.S. (2017). Self-regulation strategy, feedback timing and hemodynamic properties modulate learning in a simulated fMRI neurofeedback environment. PLoS Comput. Biol. 13: e1005681, https://doi.org/10.1371/journal.pcbi.1005681.Search in Google Scholar PubMed PubMed Central
Ossadtchi, A., Shamaeva, T., Okorokova, E., Moiseeva, V., and Lebedev, M.A. (2017). Neurofeedback learning modifies the incidence rate of alpha spindles, but not their duration and amplitude. Sci. Rep. 7: 3772, https://doi.org/10.1038/s41598-017-04012-0.Search in Google Scholar PubMed PubMed Central
Pandria, N., Kovatsi, L., Vivas, A.B., and Bamidis, P.D. (2018). Resting-state abnormalities in heroin-dependent individuals. Neuroscience 378: 113–145, https://doi.org/10.1016/j.neuroscience.2016.11.018.Search in Google Scholar PubMed
Pandya, D.Ν. and Barnes, C.L. (2019). Architecture and connections of the frontal lobe. In: The frontal lobes revisited. Psychology Press, New York, US, pp. 41–72.10.4324/9781315788975-3Search in Google Scholar
Papo, D. (2019). Neurofeedback: principles, appraisal, and outstanding issues. Eur. J. Neurosci. 49: 1454–1469, https://doi.org/10.1111/ejn.14312.Search in Google Scholar PubMed
Papoutsi, M., Weiskopf, N., Langbehn, D., Reilmann, R., Rees, G., and Tabrizi, S.J. (2018). Stimulating neural plasticity with real-time fMRI neurofeedback in Huntington’s disease: a proof of concept study. Hum. Brain Mapp. 39: 1339–1353, https://doi.org/10.1002/hbm.23921.Search in Google Scholar PubMed PubMed Central
Paret, C., Zahringer, J., Ruf, M., Gerchen, M.F., Mall, S., Hendler, T., Schmahl, C., and Ende, G. (2018). Monitoring and control of amygdala neurofeedback involves distributed information processing in the human brain. Hum. Brain Mapp. 39: 3018–3031, https://doi.org/10.1002/hbm.24057.Search in Google Scholar PubMed PubMed Central
Paulus, M.P., Hozack, N., Frank, L., and Brown, G.G. (2002). Error rate and outcome predictability affect neural activation in prefrontal cortex and anterior cingulate during decision-making. Neuroimage 15: 836–846, https://doi.org/10.1006/nimg.2001.1031.Search in Google Scholar PubMed
Paus, T. (2001). Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat. Rev. Neurosci. 2: 417–424, https://doi.org/10.1038/35077500.Search in Google Scholar PubMed
Pawlak, V., Wickens, J., Kirkwood, A., and Kerr, J. (2010). Timing is not everything: neuromodulation opens the STDP gate. Front. Synaptic Neurosci. 2: 146, https://doi.org/10.3389/fnsyn.2010.00146.Search in Google Scholar PubMed PubMed Central
Posner, M.I. and Rothbart, M.K. (1998). Attention, self-regulation and consciousness. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353: 1915–1927, https://doi.org/10.1098/rstb.1998.0344.Search in Google Scholar PubMed PubMed Central
Purves, D., Augustine, G.J., Fitzpatrick, D., Katz, L.C., LaMantia, A.S., McNamara, J.O., and Williams, S.M. (2001). Chapter 24 - Neurotransmitters. In: Neuroscience, 3rd ed. Sinauer Associates, Sunderland, Massachusetts, US, pp. 275–610.Search in Google Scholar
Raichle, M.E., Fiez, J.A., Videen, T.O., MacLeod, A.M., Pardo, J.V., Fox, P.T., and Petersen, S.E. (1994). Practice-related changes in human brain functional anatomy during nonmotor learning. Cerebr. Cortex 4: 8–26, https://doi.org/10.1093/cercor/4.1.8.Search in Google Scholar PubMed
Ramsay, D.S. and Woods, S.C. (2014). Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychol. Rev. 121: 225–247, https://doi.org/10.1037/a0035942.Search in Google Scholar PubMed PubMed Central
Rance, M., Walsh, C., Sukhodolsky, D.G., Pittman, B., Qiu, M., Kichuk, S.A., Wasylink, S., Koller, W.N., Bloch, M., Gruner, P., et al.. (2018). Time course of clinical change following neurofeedback. Neuroimage 181: 807–813, https://doi.org/10.1016/j.neuroimage.2018.05.001.Search in Google Scholar PubMed PubMed Central
Reiner, M., Gruzelier, J., Bamidis, P.D., and Auer, T. (2018). The science of neurofeedback: learnability and effects. Neuroscience 378: 1–10, https://doi.org/10.1016/j.neuroscience.2018.04.024.Search in Google Scholar PubMed
Ring, C., Cooke, A., Kavussanu, M., McIntyre, D., and Masters, R. (2015). Investigating the efficacy of neurofeedback training for expediting expertise and excellence in sport. Psychol. Sport Exerc. 16: 118–127, https://doi.org/10.1016/j.psychsport.2014.08.005.Search in Google Scholar
Rolls, E.T. (2000). The orbitofrontal cortex and reward. Cerebr. Cortex 10: 284–294, https://doi.org/10.1093/cercor/10.3.284.Search in Google Scholar PubMed
Ros, T., Baars, B.J., Lanius, R.A., and Vuilleumier, P. (2014). Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework. Front. Hum. Neurosci. 8: 1008, https://doi.org/10.3389/fnhum.2014.01008.Search in Google Scholar PubMed PubMed Central
Ros, T., Enriquez-Geppert, S., Zotev, V., Young, K.D., Wood, G., Whitfield-Gabrieli, S., Wan, F., Vuilleumier, P., Vialatte, F., Van De Ville, D., et al.. (2020a). Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain 143: 1674–1685, https://doi.org/10.1093/brain/awaa009.Search in Google Scholar PubMed PubMed Central
Ros, T., Kwiek, J., Andriot, T., Michela, A., Vuilleumier, P., Garibotto, V., and Ginovart, N. (2020b). PET imaging of dopamine neurotransmission during EEG neurofeedback. Front. Physiol. 11: 590503, https://doi.org/10.3389/fphys.2020.590503.Search in Google Scholar PubMed PubMed Central
Russell-Chapin, L., Kemmerly, T., Liu, W.-C., Zagardo, M.T., Chapin, T., Dailey, D., and Dinh, D. (2013). The effects of neurofeedback in the default mode network: pilot study results of medicated children with ADHD. J. Neurother. 17: 35–42, https://doi.org/10.1080/10874208.2013.759017.Search in Google Scholar
Sanei, S. and Chambers, J.A. (2007). EEG signal processing. John Wiley & Sons, Chichester, West Sussex, UK.10.1002/9780470511923Search in Google Scholar
Saxbe, D.E., Beckes, L., Stoycos, S.A., and Coan, J.A. (2020). Social allostasis and social allostatic load: a new model for research in social dynamics, stress, and health. Perspect. Psychol. Sci. 15: 469–482, https://doi.org/10.1177/1745691619876528.Search in Google Scholar
Schabus, M. (2017). Reply: on assessing neurofeedback effects: should double-blind replace neurophysiological mechanisms? Brain 140: e64, https://doi.org/10.1093/brain/awx212.Search in Google Scholar
Schabus, M. (2018). Reply: noisy but not placebo: defining metrics for effects of neurofeedback. Brain 141: e41, https://doi.org/10.1093/brain/awy061.Search in Google Scholar
Schultz, W. (2002). Getting formal with dopamine and reward. Neuron 36: 241–263, https://doi.org/10.1016/s0896-6273(02)00967-4.Search in Google Scholar
Shibata, K. (2021). Mechanisms of fMRI neurofeedback. In: Hampson, M. (Ed.), fMRI neurofeedback. Academic Press, London, UK, pp. 287–313.10.1016/B978-0-12-822421-2.00004-1Search in Google Scholar
Shinners, S.M. (1998). Modern control system theory and design. Wiley, New York, US.Search in Google Scholar
Shirvalkar, P.R. (2009). Hippocampal neural assemblies and conscious remembering. J. Neurophysiol. 101: 2197–2200, https://doi.org/10.1152/jn.91363.2008.Search in Google Scholar PubMed PubMed Central
Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., Weiskopf, N., Blefari, M.L., Rana, M., Oblak, E., et al.. (2017). Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci. 18: 86–100, https://doi.org/10.1038/nrn.2016.164.Search in Google Scholar PubMed
Skouras, S. and Scharnowski, F. (2019). The effects of psychiatric history and age on self-regulation of the default mode network. Neuroimage 198: 150–159, https://doi.org/10.1016/j.neuroimage.2019.05.008.Search in Google Scholar PubMed PubMed Central
Sohlberg, M.M. and Mateer, C.A. (1989). Introduction to cognitive rehabilitation: theory and practice. Guilford Press, New York, NY, US.Search in Google Scholar
Somjen, G.G. (1992). The missing error signal—regulation beyond negative feedback. Physiology 7: 184–185, https://doi.org/10.1152/physiologyonline.1992.7.4.184.Search in Google Scholar
Sorger, B., Kamp, T., Weiskopf, N., Peters, J.C., and Goebel, R. (2018). When the brain takes ‘BOLD’ steps: real-time fMRI neurofeedback can further enhance the ability to gradually self-regulate regional brain activation. Neuroscience 378: 71–88, https://doi.org/10.1016/j.neuroscience.2016.09.026.Search in Google Scholar PubMed PubMed Central
Spence, S.A. and Frith, C.D. (1999). Towards a functional anatomy of volition. J. Conscious. Stud. 6: 11–29.Search in Google Scholar
Stephan, K.E., Manjaly, Z.M., Mathys, C.D., Weber, L.A., Paliwal, S., Gard, T., Tittgemeyer, M., Fleming, S.M., Haker, H., Seth, A.K., et al.. (2016). Allostatic self-efficacy: a metacognitive theory of dyshomeostasis-induced fatigue and depression. Front. Hum. Neurosci. 10: 550, https://doi.org/10.3389/fnhum.2016.00550.Search in Google Scholar PubMed PubMed Central
Sterling, P. (2012). Allostasis: a model of predictive regulation. Physiol. Behav. 106: 5–15, https://doi.org/10.1016/j.physbeh.2011.06.004.Search in Google Scholar PubMed
Sterling, P. (2018). Predictive regulation and human design. eLife 7: e36133, https://doi.org/10.7554/eLife.36133.Search in Google Scholar PubMed PubMed Central
Sterling, P. (2020). What is health?: Allostasis and the evolution of human design. MIT Press, Cambridge, Massachusetts, US.10.7551/mitpress/11472.001.0001Search in Google Scholar
Sterling, P., Eyer, J., Fisher, S., and Reason, J. (1988). Handbook of life stress, cognition and health. Allostasis; a new paradigm to explain arousal pathology. Wiley, New York, pp. 629–649.Search in Google Scholar
Sterling, P. and Laughlin, S. (2015). Principles of neural design. MIT Press.10.7551/mitpress/9780262028707.001.0001Search in Google Scholar
Stuss, D.T. (1991). Self, awareness, and the frontal lobes: a neuropsychological perspective. In: Strauss, J. and Goethals, G.R. (Eds.), The self: interdisciplinary approaches. Springer New York, New York, NY, pp. 255–278.10.1007/978-1-4684-8264-5_13Search in Google Scholar
Stuss, D.T. and Levine, B. (2002). Adult clinical neuropsychology: lessons from studies of the frontal lobes. Annu. Rev. Psychol. 53: 401–433, https://doi.org/10.1146/annurev.psych.53.100901.135220.Search in Google Scholar PubMed
Sulzer, J., Sitaram, R., Blefari, M.L., Kollias, S., Birbaumer, N., Stephan, K.E., Luft, A., and Gassert, R. (2013). Neurofeedback-mediated self-regulation of the dopaminergic midbrain. Neuroimage 83: 817–825, https://doi.org/10.1016/j.neuroimage.2013.05.115.Search in Google Scholar PubMed
Tang, Y.Y., Lu, Q., Fan, M., Yang, Y., and Posner, M.I. (2012). Mechanisms of white matter changes induced by meditation. Proc. Natl. Acad. Sci. U. S. A. 109: 10570–10574, https://doi.org/10.1073/pnas.1207817109.Search in Google Scholar PubMed PubMed Central
Ter Horst, G.J., Hautvast, R.W., De Jongste, M.J., and Korf, J. (1996). Neuroanatomy of cardiac activity-regulating circuitry: a transneuronal retrograde viral labelling study in the rat. Eur. J. Neurosci. 8: 2029–2041, https://doi.org/10.1111/j.1460-9568.1996.tb00723.x.Search in Google Scholar PubMed
Terreberry, R.R. and Neafsey, E.J. (1987). The rat medial frontal cortex projects directly to autonomic regions of the brainstem. Brain Res. Bull. 19: 639–649, https://doi.org/10.1016/0361-9230(87)90050-5.Search in Google Scholar
Thibault, R.T., Lifshitz, M., and Raz, A. (2016). The self-regulating brain and neurofeedback: experimental science and clinical promise. Cortex 74: 247–261, https://doi.org/10.1016/j.cortex.2015.10.024.Search in Google Scholar
Thibault, R.T. and Raz, A. (2017). The psychology of neurofeedback: clinical intervention even if applied placebo. Am. Psychol. 72: 679–688, https://doi.org/10.1037/amp0000118.Search in Google Scholar
Thibault, R.T. and Raz, A. (2018). A consensus framework for neurofeedback research (and the perils of unfounded neuroreductionism): reply to Micoulaud-Franchi and Fovet (2018). Am. Psychol. 73: 936–937, https://doi.org/10.1037/amp0000366.Search in Google Scholar
Thompson, L. (2004). Electroencephalographic applications. AAPB, Wheat Ridge Colorado.Search in Google Scholar
Tinga, A.M., de Back, T.T., and Louwerse, M.M. (2019). Non-invasive neurophysiological measures of learning: a meta-analysis. Neurosci. Biobehav. Rev. 99: 59–89, https://doi.org/10.1016/j.neubiorev.2019.02.001.Search in Google Scholar
Trambaiolli, L.R., Kohl, S.H., Linden, D.E.J., and Mehler, D.M.A. (2021). Neurofeedback training in major depressive disorder: a systematic review of clinical efficacy, study quality and reporting practices. Neurosci. Biobehav. Rev. 125: 33–56, https://doi.org/10.1016/j.neubiorev.2021.02.015.Search in Google Scholar
Turrigiano, G. (2012). Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harbor Perspect. Biol. 4: a005736, https://doi.org/10.1101/cshperspect.a005736.Search in Google Scholar
van Boxtel, G.J. and Gruzelier, J.H. (2014). Neurofeedback: introduction to the special issue. Biol. Psychol. 95: 1–3, https://doi.org/10.1016/j.biopsycho.2013.11.011.Search in Google Scholar
van Kesteren, M.T., Fernandez, G., Norris, D.G., and Hermans, E.J. (2010). Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans. Proc. Natl. Acad. Sci. U. S. A. 107: 7550–7555, https://doi.org/10.1073/pnas.0914892107.Search in Google Scholar
Verberne, A.J.M. and Owens, N.C. (1998). Cortical modulation of the cardiovascular system. Prog. Neurobiol. 54: 149–168, https://doi.org/10.1016/s0301-0082(97)00056-7.Search in Google Scholar
Vogt, B.A., Vogt, L., Farber, N.B., and Bush, G. (2005). Architecture and neurocytology of monkey cingulate gyrus. J. Comp. Neurol. 485: 218–239, https://doi.org/10.1002/cne.20512.Search in Google Scholar
Watanabe, T., Sasaki, Y., Shibata, K., and Kawato, M. (2017). Advances in fMRI real-time neurofeedback. Trends Cognit. Sci. 21: 997–1010, https://doi.org/10.1016/j.tics.2017.09.010.Search in Google Scholar
Wickens, J. (1990). Striatal dopamine in motor activation and reward-mediated learning: steps towards a unifying model. J. Neural Transm. Gen. Sect. 80: 9–31, https://doi.org/10.1007/bf01245020.Search in Google Scholar
Wiener, N. (2019). Cybernetics or control and communication in the animal and the machine. MIT Press, Cambridge, Massachusetts, US.10.7551/mitpress/11810.001.0001Search in Google Scholar
Witte, M., Kober, S.E., and Wood, G. (2018). Noisy but not placebo: defining metrics for effects of neurofeedback. Brain 141: e40, https://doi.org/10.1093/brain/awy060.Search in Google Scholar
Wyland, C.L., Kelley, W.M., Macrae, C.N., Gordon, H.L., and Heatherton, T.F. (2003). Neural correlates of thought suppression. Neuropsychologia 41: 1863–1867, https://doi.org/10.1016/j.neuropsychologia.2003.08.001.Search in Google Scholar
Wyrwicka, W. and Sterman, M.B. (1968). Instrumental conditioning of sensorimotor cortex EEG spindles in the waking cat. Physiol. Behav. 3: 703–707, https://doi.org/10.1016/0031-9384(68)90139-x.Search in Google Scholar
Yeh, W.H., Hsueh, J.J., and Shaw, F.Z. (2020). Neurofeedback of alpha activity on memory in healthy participants: a systematic review and meta-analysis. Front. Hum. Neurosci. 14: 562360, https://doi.org/10.3389/fnhum.2020.562360.Search in Google Scholar PubMed PubMed Central
Zoefel, B., Huster, R.J., and Herrmann, C.S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage 54: 1427–1431, https://doi.org/10.1016/j.neuroimage.2010.08.078.Search in Google Scholar PubMed
Zotev, V., Krueger, F., Phillips, R., Alvarez, R.P., Simmons, W.K., Bellgowan, P., Drevets, W.C., and Bodurka, J. (2011). Self-regulation of amygdala activation using real-time FMRI neurofeedback. PLoS One 6: e24522, https://doi.org/10.1371/journal.pone.0024522.Search in Google Scholar PubMed PubMed Central
Zsoldos, E. and Ebmeier, K.P. (2016). Chapter 38 – aging and psychological stress. In: Fink, G. (Ed.), Stress: concepts, cognition, emotion, and behavior. Academic Press, San Diego, pp. 311–323.10.1016/B978-0-12-800951-2.00039-XSearch in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Intranasal application of stem cells and their derivatives as a new hope in the treatment of cerebral hypoxia/ischemia: a review
- Neurofeedback and neural self-regulation: a new perspective based on allostasis
- Acute cerebrovascular events in severe and nonsevere COVID-19 patients: a systematic review and meta-analysis
- mRNA editing of kainate receptor subunits: what do we know so far?
- Understanding mitochondria and the utility of optimization as a canonical framework for identifying and modeling mitochondrial pathways
- Probiotic effects on anxiety-like behavior in animal models
Articles in the same Issue
- Frontmatter
- Intranasal application of stem cells and their derivatives as a new hope in the treatment of cerebral hypoxia/ischemia: a review
- Neurofeedback and neural self-regulation: a new perspective based on allostasis
- Acute cerebrovascular events in severe and nonsevere COVID-19 patients: a systematic review and meta-analysis
- mRNA editing of kainate receptor subunits: what do we know so far?
- Understanding mitochondria and the utility of optimization as a canonical framework for identifying and modeling mitochondrial pathways
- Probiotic effects on anxiety-like behavior in animal models