Abstract
The goal of this paper is to provide an overview of our current understanding of mitochondrial function as a framework to motivate the hypothesis that mitochondrial behavior is governed by optimization principles that are constrained by the laws of the physical and biological sciences. Then, mathematical optimization tools can generally be useful to model some of these processes under reasonable assumptions and limitations. We are specifically interested in optimizations via variational methods, which are briefly summarized. Within such an optimization framework, we suggest that the numerous mechanical instigators of cell and intracellular functioning can be modeled utilizing some of the principles of mechanics that govern engineered systems, as well as by the frequently observed feedback and feedforward mechanisms that coordinate the multitude of processes within cells. These mechanical aspects would need to be coupled to governing biochemical rules. Of course, biological systems are significantly more complex than engineered systems, and require considerably more experimentation to ascertain and characterize parameters and subsequent behavior. That complexity requires well-defined limitations and assumptions for any derived models. Optimality is being motivated as a framework to help us understand how cellular decisions are made, especially those that transition between physiological behaviors and dysfunctions along pathophysiological pathways. We elaborate on our interpretation of optimality and cellular decision making within the body of this paper, as we revisit these ideas in the numerous different contexts of mitochondrial functions.
Acknowledgements
The author is tremendously grateful to the three reviewers who made valuable recommendations for the improvement of this paper’s organization and content. Thanks and appreciation also go to the Editor-in-Chief who has been gracious in the management of the review process. Finally, much appreciation goes to the authors of the manuscripts from which the images herein have been included, with permission, that have greatly improved the accessibility of the material presented and discussed.
-
Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The author declares no conflicts of interest regarding this article.
References
Adiele, R.C. and Adiele, C.A. (2019). Metabolic defects in multiple sclerosis. Mitochondrion 44: 7–14, https://doi.org/10.1016/j.mito.2017.12.005.Search in Google Scholar PubMed
Alimohamadi, H. and Rangamani, P. (2018). Modeling membrane curvature generation due to membrane–protein interactions. Biomolecules 8: 120, https://doi.org/10.3390/biom8040120.Search in Google Scholar PubMed PubMed Central
Baker, N., Patel, J., and Khacho, M. (2019). Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: how mitochondrial structure can regulate bioenergetics. Mitochondrion 49: 259–268, https://doi.org/10.1016/j.mito.2019.06.003.Search in Google Scholar PubMed
Balazsi, G., van Oudenaarden, A., and Collins, J.J. (2011). Cellular decision making and biological noise: from microbes to mammals. Cell 144: 910–925, https://doi.org/10.1016/j.cell.2011.01.030.Search in Google Scholar PubMed PubMed Central
Banga, J.R. (2008). Optimization in computational systems biology. BMC Syst. Biol. 2: 47, https://doi.org/10.1186/1752-0509-2-47.Search in Google Scholar PubMed PubMed Central
Barberis, S.D. (2019). Wiring optimization explanation in neuroscience: what is special about it? THEORIA 34, https://doi.org/10.1387/theoria.18148.Search in Google Scholar
Barbot, M. and Meinecke, M. (2016). Reconstitutions of mitochondrial inner membrane remodeling. J. Struct. Biol. 196: 20–28, https://doi.org/10.1016/j.jsb.2016.07.014.Search in Google Scholar PubMed
Bassereau, P., Jin, R., Baumgart, T., Deserno, M., Dimova, R., Frolov, V.A., Bashkirov, P.V., Grubmüller, H., Jahn, R., Risselada, H.J., et al.. (2018). The 2018 biomembrane curvature and remodeling roadmap. J. Phys. D Appl. Phys. 51: 343001, https://doi.org/10.1088/1361-6463/aacb98.Search in Google Scholar PubMed PubMed Central
Beard, D.A. (2005). A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLoS Comput. Biol. 1: e36, https://doi.org/10.1371/journal.pcbi.0010036.Search in Google Scholar PubMed PubMed Central
Benard, G., Bellance, N., James, D., Parrone, P., Fernandez, H., Letellier, T., and Rossignol, R. (2007). Mitochondrial bioenergetics and structural network organization. J. Cell Sci. 120: 838–848, https://doi.org/10.1242/jcs.03381.Search in Google Scholar PubMed
Benaroya, H. (2020). Brain energetics, mitochondria, and traumatic brain injury. Rev. Neurosci. 31: 363–390, https://doi.org/10.1515/revneuro-2019-0086.Search in Google Scholar PubMed
Benaroya, H. and Bernold, L. (2008). Engineering of lunar bases. Acta Astronaut. 62: 277–299, https://doi.org/10.1016/j.actaastro.2007.05.001.Search in Google Scholar
Benaroya, H., Nagurka, M.L., and Han, S.M. (2018). Mechanical vibration: analysis, uncertainties, and control, 4th ed. Boca Raton, FL: CRC Press, Taylor & Francis Group.10.1201/9781315118369Search in Google Scholar
Bertram, R., Gram Pedersen, M., Luciani, D.S., and Sherman, A. (2006). A simplified model for mitochondrial ATP production. J. Theor. Biol. 243: 575–586, https://doi.org/10.1016/j.jtbi.2006.07.019.Search in Google Scholar PubMed
Bossy-Wetzel, E. and Green, D.R. (1999). Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J. Biol. Chem. 274: 17484–17490, https://doi.org/10.1074/jbc.274.25.17484.Search in Google Scholar PubMed
Brown, A.E. and Discher, D.E. (2009). Conformational changes and signaling in cell and matrix physics. Curr. Biol. 19: R781–R789, https://doi.org/10.1016/j.cub.2009.06.054.Search in Google Scholar PubMed PubMed Central
Brown, M.F. (2012). Curvature forces in membrane lipid–protein interactions. Biochemistry 51: 9782–9795, https://doi.org/10.1021/bi301332v.Search in Google Scholar PubMed PubMed Central
Buhlman, L.M. (Ed.) (2016). Mitochondrial mechanisms of degeneration and repair in Parkinson’s disease. Cham, Switzerland: Springer Nature.10.1007/978-3-319-42139-1Search in Google Scholar
Caicedo, A., Zambrano, K., Sanon, S., Luis Velez, J., Montalvo, M., Jara, F., Moscoso, S.A., Velez, P., Maldonado, A., and Velarde, G. (2021). The diversity and coexistence of extracellular mitochondria in circulation: a friend or foe of the immune system. Mitochondrion 58: 270–284, https://doi.org/10.1016/j.mito.2021.02.014.Search in Google Scholar PubMed
Cairns, C.B., Walther, J., Harken, A.H., and Banerjee, A. (1998). Mitochondrial oxidative phosphorylation thermodynamic efficiencies reflect physiological organ roles. Am. J. Physiol. Regul. Integr. Comp. Physiol. 274: 1376–1383, https://doi.org/10.1152/ajpregu.1998.274.5.R1376.Search in Google Scholar PubMed
Calvetti, D. and Somersalo, E. (2015). Life sciences through mathematical models. Rend. Lincei. 26: 193–201, https://doi.org/10.1007/s12210-015-0422-5.Search in Google Scholar
Calvetti, D. and Somersalo, E. (2019). Brain energy metabolism. In: Encyclopedia of computational neuroscience. Springer Science+Business Media, LLC, part of Springer Nature, New York, pp. 1–19.10.1007/978-1-4614-7320-6_100673-1Search in Google Scholar
Canham, P.B. (1970). The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26: 61–81, https://doi.org/10.1016/s0022-5193(70)80032-7.Search in Google Scholar
Cenini, G., Lloret, A., and Cascella, R. (2019). Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxid. Med. Cell. Longev. 2019: 2105607, https://doi.org/10.1155/2019/2105607.Search in Google Scholar PubMed PubMed Central
Chauhan, A., Vera, J., and Wolkenhauer, O. (2014). The systems biology of mitochondrial fission and fusion and implications for disease and aging. Biogerontology 15: 1–12, https://doi.org/10.1007/s10522-013-9474-z.Search in Google Scholar PubMed
Chen, B.L., Hall, D.H., and Chklovskii, D.B. (2006). Wiring optimization can relate neuronal structure and function. Proc. Natl. Acad. Sci. U.S.A. 103: 4723–4728, https://doi.org/10.1073/pnas.0506806103.Search in Google Scholar PubMed PubMed Central
Chen, Y., Meyer, J.N., Hill, H.Z., Lange, G., Condon, M.R., Klein, J.C., Ndirangu, D., and Falvo, M.J. (2017). Role of mitochondrial DNA damage and dysfunction in veterans with Gulf War illness. PLoS One 12: e0184832, https://doi.org/10.1371/journal.pone.0184832.Search in Google Scholar PubMed PubMed Central
Cogliati, S., Enriquez, J.A., and Scorrano, L. (2016). Mitochondrial cristae: where beauty meets functionality. Trends Biochem. Sci. 41: 261–273, https://doi.org/10.1016/j.tibs.2016.01.001.Search in Google Scholar PubMed
Cohen, B.H. and Gold, D.R. (2001). Mitochondrial cytopathy in adults – what we know so far. Cleve. Clin. J. Med. 68: 625–642, https://doi.org/10.3949/ccjm.68.7.625.Search in Google Scholar PubMed
Colina‐Tenorio, L., Horten, P., Pfanner, N., and Rampelt, H. (2020). Shaping the mitochondrial inner membrane in health and disease. J. Intern. Med. 287: 645–664, https://doi.org/10.1111/joim.13031.Search in Google Scholar PubMed
Correia, S.C. and Moreira, P.I. (2018). Role of mitochondria in neurodegenerative diseases: the dark side of the “energy factory”. In: Mitochondrial biology and experimental therapeutics. Springer International Publishing AG, part of Springer Nature, Switzerland, pp. 213–239.10.1007/978-3-319-73344-9_11Search in Google Scholar
Csordas, G., Weaver, D., and Hajnoczky, G. (2018). Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions. Trends Cell Biol. 28: 523–540, https://doi.org/10.1016/j.tcb.2018.02.009.Search in Google Scholar PubMed PubMed Central
Denn, M.M. (1969). Optimization by variational methods. New York: McGraw-Hill.Search in Google Scholar
Diogo, C.V., Yambire, K.F., Fernandez Mosquera, L., Branco, F.T., and Raimundo, N. (2018). Mitochondrial adventures at the organelle society. Biochem. Biophys. Res. Commun. 500: 87–93, https://doi.org/10.1016/j.bbrc.2017.04.124.Search in Google Scholar PubMed PubMed Central
Dorn, G.W.2nd and Maack, C. (2013). SR and mitochondria: calcium cross-talk between kissing cousins. J. Mol. Cell. Cardiol. 55: 42–49, https://doi.org/10.1016/j.yjmcc.2012.07.015.Search in Google Scholar PubMed
Doyle, F.J.3rd and Stelling, J. (2006). Systems interface biology. J. R. Soc. Interface 3: 603–616, https://doi.org/10.1098/rsif.2006.0143.Search in Google Scholar PubMed PubMed Central
Drapaca, C.S. (2015). An electromechanical model of neuronal dynamics using Hamilton’s principle. Front. Cell. Neurosci. 9: 271, https://doi.org/10.3389/fncel.2015.00271.Search in Google Scholar PubMed PubMed Central
Duchen, M.R. (2004). Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol. Aspect. Med. 25: 365–451, https://doi.org/10.1016/j.mam.2004.03.001.Search in Google Scholar PubMed
Dudkina, N.V., Eubel, H., Keegstra, W., Boekema, E.J., and Braun, H.P. (2005). Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc. Natl. Acad. Sci. U. S. A. 102: 3225–3229, https://doi.org/10.1073/pnas.0408870102.Search in Google Scholar PubMed PubMed Central
Dudkina, N.V., Kouril, R., Peters, K., Braun, H.P., and Boekema, E.J. (2010). Structure and function of mitochondrial supercomplexes. Biochim. Biophys. Acta 1797: 664–670, https://doi.org/10.1016/j.bbabio.2009.12.013.Search in Google Scholar PubMed
Eisner, V., Picard, M., and Hajnoczky, G. (2018). Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat. Cell Biol. 20: 755–765, https://doi.org/10.1038/s41556-018-0133-0.Search in Google Scholar PubMed PubMed Central
El-Hattab, A.W. and Scaglia, F. (2016). Mitochondrial cytopathies. Cell Calcium 60: 199–206, https://doi.org/10.1016/j.ceca.2016.03.003.Search in Google Scholar PubMed
Elbaz, Y. and Schuldiner, M. (2011). Staying in touch: the molecular era of organelle contact sites. Trends Biochem. Sci. 36: 616–623, https://doi.org/10.1016/j.tibs.2011.08.004.Search in Google Scholar
Elfawy, H.A. and Das, B. (2019). Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: etiologies and therapeutic strategies. Life Sci. 218: 165–184, https://doi.org/10.1016/j.lfs.2018.12.029.Search in Google Scholar
Emam, S. and Lacarbonara, W. (2022). A review on buckling and postbuckling of thin elastic beams. Eur. J. Mech. Solid. 92, https://doi.org/10.1016/j.euromechsol.2021.104449.Search in Google Scholar
Farmer, T., Naslavsky, N., and Caplan, S. (2018). Tying trafficking to fusion and fission at the mighty mitochondria. Traffic 19: 569–577, https://doi.org/10.1111/tra.12573.Search in Google Scholar
Feng, Q. and Kornmann, B. (2018). Mechanical forces on cellular organelles. J. Cell Sci. 131, https://doi.org/10.1242/jcs.218479.Search in Google Scholar
Filadi, R. and Pizzo, P. (2020). Mitochondrial calcium handling and neurodegeneration: when a good signal goes wrong. Curr. Opin. Physiol. 17: 224–233, https://doi.org/10.1016/j.cophys.2020.08.009.Search in Google Scholar
Frey, T.G. and Mannella, C.A. (2000). The internal structure of mitochondria. Trends Biochem. Sci. 25: 319–324, https://doi.org/10.1016/s0968-0004(00)01609-1.Search in Google Scholar
Friedman, J.R., Lackner, L.L., West, M., Dibenedetto, J.R., Nunnari, J., and Voeltz, G.K. (2011). ER tubules mark sites of mitochondrial division. Science 334: 358–362, https://doi.org/10.1126/science.1207385.Search in Google Scholar PubMed PubMed Central
Galloway, C.A., Lee, H., and Yoon, Y. (2012). Mitochondrial morphology-emerging role in bioenergetics. Free Radic. Biol. Med. 53: 2218–2228, https://doi.org/10.1016/j.freeradbiomed.2012.09.035.Search in Google Scholar PubMed PubMed Central
Galluzzi, L., Morselli, E., Kepp, O., Vitale, I., Rigoni, A., Vacchelli, E., Michaud, M., Zischka, H., Castedo, M., and Kroemer, G. (2010). Mitochondrial gateways to cancer. Mol. Aspect. Med. 31: 1–20, https://doi.org/10.1016/j.mam.2009.08.002.Search in Google Scholar PubMed
Genova, M.L. and Lenaz, G. (2013). A critical appraisal of the role of respiratory supercomplexes in mitochondria. Biol. Chem. 394: 631–639, https://doi.org/10.1515/hsz-2012-0317.Search in Google Scholar PubMed
Ghochani, M., Nulton, J.D., Salamon, P., Frey, T.G., Rabinovitch, A., and Baljon, A.R. (2010). Tensile forces and shape entropy explain observed crista structure in mitochondria. Biophys. J. 99: 3244–3254, https://doi.org/10.1016/j.bpj.2010.09.038.Search in Google Scholar PubMed PubMed Central
Giorgi, C., De Stefani, D., Bononi, A., Rizzuto, R., and Pinton, P. (2009). Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int. J. Biochem. Cell Biol. 41: 1817–1827, https://doi.org/10.1016/j.biocel.2009.04.010.Search in Google Scholar PubMed PubMed Central
Glancy, B., Willingham, T.B., Kim, Y., and Katti, P. (2020). The functional impact of mitochondrial structure across subcellular scales. Front. Physiol. 11: 541040, https://doi.org/10.3389/fphys.2020.541040.Search in Google Scholar PubMed PubMed Central
Golshani-Hebroni, S. (2016). Mg++ requirement for MtHK binding, and Mg++ stabilization of mitochondrial membranes via activation of MtHK & MtCK and promotion of mitochondrial permeability transition pore closure: a hypothesis on mechanisms underlying Mg++’s antioxidant and cytoprotective effects. Gene 581: 1–13, https://doi.org/10.1016/j.gene.2015.12.046.Search in Google Scholar PubMed
Goriely, A., Geers, M.G., Holzapfel, G.A., Jayamohan, J., Jerusalem, A., Sivaloganathan, S., Squier, W., van Dommelen, J.A., Waters, S., and Kuhl, E. (2015). Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol. 14: 931–965, https://doi.org/10.1007/s10237-015-0662-4.Search in Google Scholar PubMed PubMed Central
Guillemin, A. and Stumpf, M.P.H. (2021). Noise and the molecular processes underlying cell fate decision-making. Phys. Biol. 18: 011002, https://doi.org/10.1088/1478-3975/abc9d1.Search in Google Scholar PubMed
Guillen-Gosalbez, G. and Sorribas, A. (2009). Identifying quantitative operation principles in metabolic pathways: a systematic method for searching feasible enzyme activity patterns leading to cellular adaptive responses. BMC Bioinf. 10: 386, https://doi.org/10.1186/1471-2105-10-386.Search in Google Scholar PubMed PubMed Central
Gupta, S., Kass, G.E., Szegezdi, E., and Joseph, B. (2009). The mitochondrial death pathway: a promising therapeutic target in diseases. J. Cell Mol. Med. 13: 1004–1033, https://doi.org/10.1111/j.1582-4934.2009.00697.x.Search in Google Scholar PubMed PubMed Central
Hasenstaub, A., Otte, S., Callaway, E., and Sejnowski, T.J. (2010). Metabolic cost as a unifying principle governing neuronal biophysics. Proc. Natl. Acad. Sci. U.S.A. 107: 12329–12334, https://doi.org/10.1073/pnas.0914886107.Search in Google Scholar PubMed PubMed Central
Henne, W.M. (2016). Organelle remodeling at membrane contact sites. J. Struct. Biol. 196: 15–19, https://doi.org/10.1016/j.jsb.2016.05.003.Search in Google Scholar PubMed PubMed Central
Hildebrand, F.B. (1965). Methods of applied mathematics, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall.Search in Google Scholar
Hood, D.A., Memme, J.M., Oliveira, A.N., and Triolo, M. (2019). Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu. Rev. Physiol. 81: 19–41, https://doi.org/10.1146/annurev-physiol-020518-114310.Search in Google Scholar PubMed
Ikon, N. and Ryan, R.O. (2017). Cardiolipin and mitochondrial cristae organization. Biochim. Biophys. Acta Biomembr. 1859: 1156–1163, https://doi.org/10.1016/j.bbamem.2017.03.013.Search in Google Scholar PubMed PubMed Central
Javier-Torrent, M., Zimmer-Bensch, G., and Nguyen, L. (2021). Mechanical forces orchestrate brain development. Trends Neurosci. 44: 110–121, https://doi.org/10.1016/j.tins.2020.10.012.Search in Google Scholar PubMed
John, G.B., Shang, Y., Li, L., Renken, C., Mannella, C.A., Selker, J.M.L., Rangell, L., Bennett, M.J., and Zha, J. (2005). The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol. Biol. Cell 16: 1543–1554, https://doi.org/10.1091/mbc.e04-08-0697.Search in Google Scholar PubMed PubMed Central
Joubert, F. and Puff, N. (2021). Mitochondrial cristae architecture and functions: lessons from minimal model systems. Membranes 11, https://doi.org/10.3390/membranes11070465.Search in Google Scholar PubMed PubMed Central
Kembro, J.M., Aon, M.A., Winslow, R.L., O’Rourke, B., and Cortassa, S. (2013). Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model. Biophys. J. 104: 332–343, https://doi.org/10.1016/j.bpj.2012.11.3808.Search in Google Scholar PubMed PubMed Central
Kembro, J.M., Cortassa, S., and Aon, M.A. (2014). Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function. Front. Physiol. 5: 257, https://doi.org/10.3389/fphys.2014.00257.Search in Google Scholar PubMed PubMed Central
Klecker, T., Bockler, S., and Westermann, B. (2014). Making connections: interorganelle contacts orchestrate mitochondrial behavior. Trends Cell Biol. 24: 537–545, https://doi.org/10.1016/j.tcb.2014.04.004.Search in Google Scholar PubMed
Kondadi, A.K., Anand, R., and Reichert, A.S. (2020). Cristae membrane dynamics – a paradigm change. Trends Cell Biol. 30: 923–936, https://doi.org/10.1016/j.tcb.2020.08.008.Search in Google Scholar PubMed
Kornmann, B. (2013). The molecular hug between the ER and the mitochondria. Curr. Opin. Cell Biol. 25: 443–448, https://doi.org/10.1016/j.ceb.2013.02.010.Search in Google Scholar PubMed
Kornmann, B. and Walter, P. (2010). ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology. J. Cell Sci. 123: 1389–1393, https://doi.org/10.1242/jcs.058636.Search in Google Scholar PubMed PubMed Central
Koslik, H.J., Hamilton, G., and Golomb, B.A. (2014). Mitochondrial dysfunction in Gulf war illness revealed by 31Phosphorus magnetic resonance spectroscopy: a case-control study. PLoS One 9: e92887, https://doi.org/10.1371/journal.pone.0092887.Search in Google Scholar PubMed PubMed Central
Kraus, S. (2001). Mitochondria – structure and role in respiration. In: Encyclopedia of life sciences. Nature Publishing Group, Springer, Switzerland.10.1038/npg.els.0001380Search in Google Scholar
Kremling, A. and Saez-Rodriguez, J. (2007). Systems biology – an engineering perspective. J. Biotechnol. 129: 329–351, https://doi.org/10.1016/j.jbiotec.2007.02.009.Search in Google Scholar PubMed
Kroemer, G. (1997). Mitochondrial implication in apoptosis. Towards an endosymbiont hypothesis of apoptosis evolution. Cell Death Differ. 4: 443–456, https://doi.org/10.1038/sj.cdd.4400266.Search in Google Scholar PubMed
Kubota, T., Shindo, Y., Tokuno, K., Komatsu, H., Ogawa, H., Kudo, S., Kitamura, Y., Suzuki, K., and Oka, K. (2005). Mitochondria are intracellular magnesium stores: investigation by simultaneous fluorescent imagings in PC12 cells. Biochim. Biophys. Acta Mol. Cell Res. 1744: 19–28, https://doi.org/10.1016/j.bbamcr.2004.10.013.Search in Google Scholar PubMed
Kuhlbrandt, W. (2015). Structure and function of mitochondrial membrane protein complexes. BMC Biol. 13: 89, https://doi.org/10.1186/s12915-015-0201-x.Search in Google Scholar PubMed PubMed Central
Kurt, B. and Topal, T. (2013). Mitochondrial disease. Dis. Mol. Med. 1, https://doi.org/10.5455/dmm.20130107125901.Search in Google Scholar
Laadhari, A., Misbah, C., and Saramito, P. (2010). On the equilibrium equation for a generalized biological membrane energy by using a shape optimization approach. Phys. Nonlinear Phenom. 239: 1567–1572, https://doi.org/10.1016/j.physd.2010.04.001.Search in Google Scholar
Lackner, L.L. (2014). Shaping the dynamic mitochondrial network. BMC Biol. 12: 10, https://doi.org/10.1186/1741-7007-12-35.Search in Google Scholar PubMed PubMed Central
Lanczos, C. (1986). The variational principles of mechanics, 4th ed. New York: Dover Publications.Search in Google Scholar
Lemonde, H. and Rahman, S. (2015). Inherited mitochondrial disease. Paediatr. Child Health 25: 133–138, https://doi.org/10.1016/j.paed.2014.11.002.Search in Google Scholar
Lim, C.T., Zhou, E.H., and Quek, S.T. (2006). Mechanical models for living cells – a review. J. Biomech. 39: 195–216, https://doi.org/10.1016/j.jbiomech.2004.12.008.Search in Google Scholar PubMed
Lucia, U. (2015). Bioengineering thermodynamics of biological cells. Theor. Biol. Med. Model. 12: 29, https://doi.org/10.1186/s12976-015-0024-z.Search in Google Scholar PubMed PubMed Central
Magnus, G. and Keizer, J. (1997). Minimal model of beta-cell mitochondrial Ca ion handling. Model.Physiol.: C717–C733, https://doi.org/10.1152/ajpcell.1997.273.2.c717.Search in Google Scholar
Magnus, G. and Keizer, J. (1998a). Model of Beta-cell mitochondrial calcium handling and electrical activity – I – cytoplasmic variables. Model.Physiol.: C1158–C1173, https://doi.org/10.1152/ajpcell.1998.274.4.c1158.Search in Google Scholar
Magnus, G. and Keizer, J. (1998b). Model of beta-cell mitochondrial calcium handling and electrical activity – II – mitochondrial variables. Model.Physiol.: C1174–C1184, https://doi.org/10.1152/ajpcell.1998.274.4.c1174.Search in Google Scholar PubMed
Mannella, C.A. (2000). Introduction – our changing views of mitochondria. J. Bioenerg. Biomembr. 32: 1–4, https://doi.org/10.1023/a:1005562109678.10.1023/A:1005562109678Search in Google Scholar
Mannella, C.A. (2006a). The relevance of mitochondrial membrane topology to mitochondrial function. Biochim. Biophys. Acta 1762: 140–147, https://doi.org/10.1016/j.bbadis.2005.07.001.Search in Google Scholar PubMed
Mannella, C.A. (2006b). Structure and dynamics of the mitochondrial inner membrane cristae. Biochim. Biophys. Acta 1763: 542–548, https://doi.org/10.1016/j.bbamcr.2006.04.006.Search in Google Scholar PubMed
Mannella, C.A. (2008). Structural diversity of mitochondria: functional implications. Ann. N. Y. Acad. Sci. 1147: 171–179, https://doi.org/10.1196/annals.1427.020.Search in Google Scholar PubMed PubMed Central
Mannella, C.A. (2020). Consequences of folding the mitochondrial inner membrane. Front. Physiol. 11: 536, https://doi.org/10.3389/fphys.2020.00536.Search in Google Scholar
Mannella, C.A., Lederer, W.J., and Jafri, M.S. (2013). The connection between inner membrane topology and mitochondrial function. J. Mol. Cell. Cardiol. 62: 51–57, https://doi.org/10.1016/j.yjmcc.2013.05.001.Search in Google Scholar
Mannella, C.A., Pfeiffer, D.R., Bradshaw, P.C., Moraru, I.I., Slepchenko, B., Loew, L.M., Hsieh, C.e., Buttle, K., and Marko, M. (2001). Topology of the mitochondrial inner membrane: dynamics and bioenergetic implications. IUBMB Life 52: 93–100, https://doi.org/10.1080/15216540152845885.Search in Google Scholar
Marchi, S., Patergnani, S., and Pinton, P. (2014). The endoplasmic reticulum-mitochondria connection: one touch, multiple functions. Biochim. Biophys. Acta 1837: 461–469, https://doi.org/10.1016/j.bbabio.2013.10.015.Search in Google Scholar
Merolle, L., Cappadone, C., Farruggia, G., Marraccini, C., Sargenti, A., Colanardi, A., and Iotti, S. (2014). Intracellular magnesium content changes during mitochondria-mediated apoptosis: in depth study of early events on mitochondrial membrane potential. J. Biol. Res. 87: 41, https://doi.org/10.4081/jbr.2014.2139.Search in Google Scholar
Moeendarbary, E. and Harris, A.R. (2014). Cell mechanics: principles, practices, and prospects. Wiley Interdiscip. Rev. Syst. Biol. Med. 6: 371–388, https://doi.org/10.1002/wsbm.1275.Search in Google Scholar
Morava, E. and Kozicz, T. (2013). Mitochondria and the economy of stress (mal)adaptation. Neurosci. Biobehav. Rev. 37: 668–680, https://doi.org/10.1016/j.neubiorev.2013.02.005.Search in Google Scholar
Moshkforoush, A., Ashenagar, B., Tsoukias, N.M., and Alevriadou, B.R. (2019). Modeling the role of endoplasmic reticulum-mitochondria microdomains in calcium dynamics. Sci. Rep. 9: 17072, https://doi.org/10.1038/s41598-019-53440-7.Search in Google Scholar
Mottaghi, S. and Benaroya, H. (2015). Design of a lunar surface structure. I: design configuration and thermal analysis. J. Aero. Eng. 28, https://doi.org/10.1061/(asce)as.1943-5525.0000382.Search in Google Scholar
Murley, A. and Nunnari, J. (2016). The emerging network of mitochondria-organelle contacts. Mol. Cell. 61: 648–653, https://doi.org/10.1016/j.molcel.2016.01.031.Search in Google Scholar PubMed PubMed Central
Nielsen, J. (2007). Principles of optimal metabolic network operation. Mol. Syst. Biol. 3: 126, https://doi.org/10.1038/msb4100169.Search in Google Scholar PubMed PubMed Central
Nielsen, J., Gejl, K.D., Hey-Mogensen, M., Holmberg, H.C., Suetta, C., Krustrup, P., Elemans, C.P.H., and Ortenblad, N. (2017). Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. J. Physiol. 595: 2839–2847, https://doi.org/10.1113/jp273040.Search in Google Scholar
Niyazov, D.M., Kahler, S.G., and Frye, R.E. (2016). Primary mitochondrial disease and secondary mitochondrial dysfunction: importance of distinction for diagnosis and treatment. Mol. Syndromol. 7: 122–137, https://doi.org/10.1159/000446586.Search in Google Scholar PubMed PubMed Central
Ormazabal, A., Casado, M., Molero-Luis, M., Montoya, J., Rahman, S., Aylett, S.-B., Hargreaves, I., Heales, S., and Artuch, R. (2015). Can folic acid have a role in mitochondrial disorders? Drug Discov. Today 20: 1349–1354, https://doi.org/10.1016/j.drudis.2015.07.002.Search in Google Scholar PubMed
Osellame, L.D., Blacker, T.S., and Duchen, M.R. (2012). Cellular and molecular mechanisms of mitochondrial function. Best Pract. Res. Clin. Endocrinol. Metabol. 26: 711–723, https://doi.org/10.1016/j.beem.2012.05.003.Search in Google Scholar PubMed PubMed Central
Pagliuso, A., Cossart, P., and Stavru, F. (2018). The ever-growing complexity of the mitochondrial fission machinery. Cell. Mol. Life Sci. 75: 355–374, https://doi.org/10.1007/s00018-017-2603-0.Search in Google Scholar PubMed PubMed Central
Panchal, K. and Tiwari, A.K. (2019). Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion 47: 151–173, https://doi.org/10.1016/j.mito.2018.11.002.Search in Google Scholar PubMed
Panda, S., Behera, S., Alam, M.F., and Syed, G.H. (2021). Endoplasmic reticulum & mitochondrial calcium homeostasis: the interplay with viruses. Mitochondrion 58: 227–242, https://doi.org/10.1016/j.mito.2021.03.008.Search in Google Scholar PubMed PubMed Central
Patel, P.K., Shirihai, O., and Huang, K.C. (2013). Optimal dynamics for quality control in spatially distributed mitochondrial networks. PLoS Comput. Biol. 9: e1003108, https://doi.org/10.1371/journal.pcbi.1003108.Search in Google Scholar PubMed PubMed Central
Petridou, N.I., Spiro, Z., and Heisenberg, C.P. (2017). Multiscale force sensing in development. Nat. Cell Biol. 19: 581–588, https://doi.org/10.1038/ncb3524.Search in Google Scholar PubMed
Polo, C.C., Fonseca-Alaniz, M.H., Chen, J.H., Ekman, A., McDermott, G., Meneau, F., Krieger, J.E., and Miyakawa, A.A. (2020). Three-dimensional imaging of mitochondrial cristae complexity using cryo-soft X-ray tomography. Sci. Rep. 10: 21045, https://doi.org/10.1038/s41598-020-78150-3.Search in Google Scholar
Qi, H., Li, L., and Shuai, J. (2015). Optimal microdomain crosstalk between endoplasmic reticulum and mitochondria for Ca2+ oscillations. Sci. Rep. 5: 7984, https://doi.org/10.1038/srep07984.Search in Google Scholar
Quintana-Cabrera, R., Mehrotra, A., Rigoni, G., and Soriano, M.E. (2018). Who and how in the regulation of mitochondrial cristae shape and function. Biochem. Biophys. Res. Commun. 500: 94–101, https://doi.org/10.1016/j.bbrc.2017.04.088.Search in Google Scholar
Racay, P. (2008). Effect of magnesium on calcium-induced depolarisation of mitochondrial transmembrane potential. Cell Biol. Int. 32: 136–145, https://doi.org/10.1016/j.cellbi.2007.08.024.Search in Google Scholar
Raffaello, A., Mammucari, C., Gherardi, G., and Rizzuto, R. (2016). Calcium at the center of cell signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem. Sci. 41: 1035–1049, https://doi.org/10.1016/j.tibs.2016.09.001.Search in Google Scholar
Rampelt, H., Zerbes, R.M., van der Laan, M., and Pfanner, N. (2017). Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. Biochim. Biophys. Acta Mol. Cell Res. 1864: 737–746, https://doi.org/10.1016/j.bbamcr.2016.05.020.Search in Google Scholar
Ramsay, D.S. and Woods, S.C. (2014). Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychol. Rev. 121: 225–247, https://doi.org/10.1037/a0035942.Search in Google Scholar
Raven, J.A. (2021). Determinants, and implications, of the shape and size of thylakoids and cristae. J. Plant Physiol. 257: 153342, https://doi.org/10.1016/j.jplph.2020.153342.Search in Google Scholar
Reddy, J.N. (2017). Energy principles and variational methods in applied mechanics, 3rd ed. New York: John Wiley & Sons, Incorporated.Search in Google Scholar
Renken, C., Siragusa, G., Perkins, G., Washington, L., Nulton, J., Salamon, P., and Frey, T.G. (2002). A thermodynamic model describing the nature of the crista junction: a structural motif in the mitochondrion. J. Struct. Biol. 138: 137–144, https://doi.org/10.1016/s1047-8477(02)00012-6.Search in Google Scholar
Roberts, R.C. (2017). Postmortem studies on mitochondria in schizophrenia. Schizophr. Res. 187: 17–25, https://doi.org/10.1016/j.schres.2017.01.056.Search in Google Scholar PubMed PubMed Central
Rossi, M.J. and Pekkurnaz, G. (2019). Powerhouse of the mind: mitochondrial plasticity at the synapse. Curr. Opin. Neurobiol. 57: 149–155, https://doi.org/10.1016/j.conb.2019.02.001.Search in Google Scholar
Saa, A. and Siqueira, K.M. (2013). Modeling the ATP production in mitochondria. Bull. Math. Biol. 75: 1636–1651, https://doi.org/10.1007/s11538-013-9862-1.Search in Google Scholar
Schechter, R.S. (1967). The variational method in engineering. New York: McGraw-Hill.Search in Google Scholar
Schmiedel, J., Jackson, S., Schafer, J., and Reichmann, H. (2003). Mitochondrial cytopathies. J. Neurol. 250: 267–277, https://doi.org/10.1007/s00415-003-0978-3.Search in Google Scholar
Schuetz, R., Kuepfer, L., and Sauer, U. (2007). Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3: 119, https://doi.org/10.1038/msb4100162.Search in Google Scholar
Schwarz, T.L. (2013). Mitochondrial trafficking in neurons. Cold Spring Harbor Perspect. Biol. 5, https://doi.org/10.1101/cshperspect.a011304.Search in Google Scholar
Segawa, M., Wolf, D.M., Hultgren, N.W., Williams, D.S., van der Bliek, A.M., Shackelford, D.B., Liesa, M., and Shirihai, O.S. (2020). Quantification of cristae architecture reveals time-dependent characteristics of individual mitochondria. Life Sci. Alliance 3, https://doi.org/10.26508/lsa.201900620.Search in Google Scholar
Shaughnessy, D.T., McAllister, K., Worth, L., Haugen, A.C., Meyer, J.N., Domann, F.E., Van Houten, B., Mostoslavsky, R., Bultman, S.J., Baccarelli, A.A., et al.. (2014). Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ. Health Perspect. 122: 1271–1278, https://doi.org/10.1289/ehp.1408418.Search in Google Scholar
Simcox, E.M. and Reeve, A.K. (2016). An introduction to mitochondria, their structure and functions. In: Mitochondrial dysfunction in neurodegenerative disorders. Springer International Publishing, Switzerland, pp. 3–30.10.1007/978-3-319-28637-2_1Search in Google Scholar
Singh, S., Singh, T.G., Rehni, A.K., Sharma, V., Singh, M., and Kaur, R. (2021). Reviving mitochondrial bioenergetics: a relevant approach in epilepsy. Mitochondrion 58: 213–226, https://doi.org/10.1016/j.mito.2021.03.009.Search in Google Scholar
Skulachev, V.P. (2001). Mitochondrial filaments and clusters as intracellular power transmitting cables. Trends Biochem. Sci. 26: 23–29, https://doi.org/10.1016/s0968-0004(00)01735-7.Search in Google Scholar
Spagnuolo, M. and Andreaus, U. (2018). A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling. Math. Mech. Solid 24: 258–280, https://doi.org/10.1177/1081286517737000.Search in Google Scholar
Stear, E.B. (1973). Systems theory aspects of physiological systems. IFAC Proc. Vol. 6: 496–500, https://doi.org/10.1016/s1474-6670(17)68074-1.Search in Google Scholar
Stephan, T., Bruser, C., Deckers, M., Steyer, A.M., Balzarotti, F., Barbot, M., Behr, T.S., Heim, G., Hubner, W., Ilgen, P., et al.. (2020). MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. EMBO J. 39: e104105, https://doi.org/10.15252/embj.2019104105.Search in Google Scholar PubMed PubMed Central
Stroud, D.A., Oeljeklaus, S., Wiese, S., Bohnert, M., Lewandrowski, U., Sickmann, A., Guiard, B., van der Laan, M., Warscheid, B., and Wiedemann, N. (2011). Composition and topology of the endoplasmic reticulum-mitochondria encounter structure. J. Mol. Biol. 413: 743–750, https://doi.org/10.1016/j.jmb.2011.09.012.Search in Google Scholar PubMed
Sutherland, W.J. (2005). The best solution. Nature 435: 569, https://doi.org/10.1038/435569a.Search in Google Scholar PubMed
Takeuchi, A. and Matsuoka, S. (2020). Integration of mitochondrial energetics in heart with mathematical modelling. J. Physiol. 598: 1443–1457, https://doi.org/10.1113/jp276817.Search in Google Scholar PubMed
Tauchert, T.R. (1974). Energy principles in structural mechanics. New York: McGraw-Hill.Search in Google Scholar
Tee, S.Y., Bausch, A.R., and Janmey, P.A. (2009). The mechanical cell. Curr. Biol. 19: R745–R748, https://doi.org/10.1016/j.cub.2009.06.034.Search in Google Scholar PubMed PubMed Central
Tyler, W.J. (2012). The mechanobiology of brain function. Nat. Rev. Neurosci. 13: 867–878, https://doi.org/10.1038/nrn3383.Search in Google Scholar PubMed
Tzameli, I. (2012). The evolving role of mitochondria in metabolism. Trends Endocrinol. Metabol. 23: 417–419, https://doi.org/10.1016/j.tem.2012.07.008.Search in Google Scholar PubMed
Vakifahmetoglu-Norberg, H., Ouchida, A.T., and Norberg, E. (2017). The role of mitochondria in metabolism and cell death. Biochem. Biophys. Res. Commun. 482: 426–431, https://doi.org/10.1016/j.bbrc.2016.11.088.Search in Google Scholar PubMed
van der Bliek, A.M., Shen, Q., and Kawajiri, S. (2013). Mechanisms of mitochondrial fission and fusion. Cold Spring Harbor Perspect. Biol. 5, https://doi.org/10.1101/cshperspect.a011072.Search in Google Scholar PubMed PubMed Central
van der Laan, M., Bohnert, M., Wiedemann, N., and Pfanner, N. (2012). Role of MINOS in mitochondrial membrane architecture and biogenesis. Trends Cell Biol. 22: 185–192, https://doi.org/10.1016/j.tcb.2012.01.004.Search in Google Scholar PubMed
Vanhauwaert, R., Bharat, V., and Wang, X. (2019). Surveillance and transportation of mitochondria in neurons. Curr. Opin. Neurobiol. 57: 87–93, https://doi.org/10.1016/j.conb.2019.01.015.Search in Google Scholar PubMed
Venkateswaran, N., Sekhar, S., Thirupatchur Sanjayasarathy, T., Krishnan, S.N., Kabaleeswaran, D.K., Ramanathan, S., Narayanasamy, N., Jagathrakshakan, S.S., and Vignesh, S.R. (2012). Energetics based spike generation of a single neuron: simulation results and analysis. Front. Neuroenerget. 4: 2, https://doi.org/10.3389/fnene.2012.00002.Search in Google Scholar PubMed PubMed Central
Vinogradskaya, I.S., Kuznetsova, T.G., and Suprunenko, E.A. (2014). Mitochondrial network of skeletal muscle fiber, 69. Moscow University Biological Sciences Bulletin, Moscow, pp. 57–66.10.3103/S009639251402014XSearch in Google Scholar
Wai, T. and Langer, T. (2016). Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metabol. 27: 105–117, https://doi.org/10.1016/j.tem.2015.12.001.Search in Google Scholar PubMed
Wallace, D.C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39: 359–407, https://doi.org/10.1146/annurev.genet.39.110304.095751.Search in Google Scholar PubMed PubMed Central
Wang, Q., Qian, W., Xu, X., Bajpai, A., Guan, K., Zhang, Z., Chen, R., Flamini, V., and Chen, W. (2019). Energy-mediated machinery drives cellular mechanical allostasis. Adv. Mater. 31: e1900453, https://doi.org/10.1002/adma.201900453.Search in Google Scholar PubMed
Wang, Y., Zhang, X.S., and Chen, L. (2010). Optimization meets systems biology. BMC Syst. Biol. 4(Suppl. 2): S1, https://doi.org/10.1186/1752-0509-4-S2-S1.Search in Google Scholar PubMed PubMed Central
Westermann, B. (2010). Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 11: 872–884, https://doi.org/10.1038/nrm3013.Search in Google Scholar PubMed
Westermann, B. (2012). Bioenergetic role of mitochondrial fusion and fission. Biochim. Biophys. Acta 1817: 1833–1838, https://doi.org/10.1016/j.bbabio.2012.02.033.Search in Google Scholar
Wilson, E.L. and Metzakopian, E. (2021). ER-mitochondria contact sites in neurodegeneration: genetic screening approaches to investigate novel disease mechanisms. Cell Death Differ. 28: 1804–1821, https://doi.org/10.1038/s41418-020-00705-8.Search in Google Scholar
Wolf, D.M., Segawa, M., Kondadi, A.K., Anand, R., Bailey, S.T., Reichert, A.S., van der Bliek, A.M., Shackelford, D.B., Liesa, M., and Shirihai, O.S. (2019). Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. EMBO J. 38: e101056, https://doi.org/10.15252/embj.2018101056.Search in Google Scholar
Wolf, F.I., Torsello, A., Fasanella, S., and Cittadini, A. (2003). Cell physiology of magnesium. Mol. Aspect. Med. 24: 11–26, https://doi.org/10.1016/s0098-2997(02)00088-2.Search in Google Scholar
Wolkenhauer, O. and Mesarovic, M. (2005). Feedback dynamics and cell function: why systems biology is called Systems Biology. Mol. Biosyst. 1: 14–16, https://doi.org/10.1039/b502088n.Search in Google Scholar PubMed
Wolkenhauer, O., Ullah, M., Wellstead, P., and Cho, K.H. (2005). The dynamic systems approach to control and regulation of intracellular networks. FEBS Lett. 579: 1846–1853, https://doi.org/10.1016/j.febslet.2005.02.008.Search in Google Scholar PubMed
Yang, X., Heinemann, M., Howard, J., Huber, G., Iyer-Biswas, S., Le Treut, G., Lynch, M., Montooth, K.L., Needleman, D.J., Pigolotti, S., et al. (2021). Physical bioenergetics: energy fluxes, budgets, and constraints in cells. Proc. Natl. Acad. Sci. U. S. A. 118, https://doi.org/10.1073/pnas.2026786118.Search in Google Scholar PubMed PubMed Central
Youle, R.J. and Van Der Bliek, A.M. (2012). Mitochondrial fission, fusion, and stress. Science 337: 1062–1065, https://doi.org/10.1126/science.1219855.Search in Google Scholar PubMed PubMed Central
Yu, S.B. and Pekkurnaz, G. (2018). Mechanisms orchestrating mitochondrial dynamics for energy homeostasis. J. Mol. Biol. 430: 3922–3941, https://doi.org/10.1016/j.jmb.2018.07.027.Search in Google Scholar PubMed PubMed Central
Zhang, L., Trushin, S., Christensen, T.A., Bachmeier, B.V., Gateno, B., Schroeder, A., Yao, J., Itoh, K., Sesaki, H., Poon, W.W., et al. (2016). Altered brain energetics induces mitochondrial fission arrest in Alzheimer’s disease. Sci. Rep. 6: 18725, https://doi.org/10.1038/srep18725.Search in Google Scholar PubMed PubMed Central
Zhong-can, O.Y. and Helfrich, W. (1989). Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A Gen. Phys. 39: 5280–5288, https://doi.org/10.1103/physreva.39.5280.Search in Google Scholar PubMed
Zick, M. and Reichert, A.S. (Eds.) (2011). Mitochondria in cellular domains. John Wiley & Sons, New York.10.1002/9781118015759.ch6Search in Google Scholar
Zorov, D.B., Isaev, N.K., Plotnikov, E.Y., Silachev, D.N., Zorova, L.D., Pevzner, I.B., Morosanova, M.A., Jankauskas, S.S., Zorov, S.D., and Babenko, V.A. (2013). Perspectives of mitochondrial medicine. Biochemistry 78: 979–990, https://doi.org/10.1134/s0006297913090034.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Intranasal application of stem cells and their derivatives as a new hope in the treatment of cerebral hypoxia/ischemia: a review
- Neurofeedback and neural self-regulation: a new perspective based on allostasis
- Acute cerebrovascular events in severe and nonsevere COVID-19 patients: a systematic review and meta-analysis
- mRNA editing of kainate receptor subunits: what do we know so far?
- Understanding mitochondria and the utility of optimization as a canonical framework for identifying and modeling mitochondrial pathways
- Probiotic effects on anxiety-like behavior in animal models
Articles in the same Issue
- Frontmatter
- Intranasal application of stem cells and their derivatives as a new hope in the treatment of cerebral hypoxia/ischemia: a review
- Neurofeedback and neural self-regulation: a new perspective based on allostasis
- Acute cerebrovascular events in severe and nonsevere COVID-19 patients: a systematic review and meta-analysis
- mRNA editing of kainate receptor subunits: what do we know so far?
- Understanding mitochondria and the utility of optimization as a canonical framework for identifying and modeling mitochondrial pathways
- Probiotic effects on anxiety-like behavior in animal models