Abstract
Sirt1, a member of the sirtuins family, is a nicotinamide adenosine dinucleotide (NAD+)-dependent deacetylase. It can be involved in the regulation of several processes including inflammatory response, apoptosis, oxidative stress, energy metabolism, and autophagy by exerting deacetylation. Nuclear factor-κB (NF-κB), a crucial nuclear transcription factor with specific DNA binding sequences, exists in almost all cells and plays a vital role in several biological processes involving inflammatory response, immune response, and apoptosis. As the hub of multiple intracellular signaling pathways, the activity of NF-κB is regulated by multiple factors. Sirt1 can both directly deacetylate NF-κB and indirectly through other molecules to inhibit its activity. We would like to emphasize that Sirt1/NF-κB is a signaling pathway that is closely related to neuroinflammation. Many recent studies have demonstrated the neuroprotective effects of Sirt1/NF-κB signaling pathway activation applied to the treatment of neurological related diseases. In this review, we focus on new advances in the neuroprotective effects of the Sirt1/NF-κB pathway. First, we briefly review Sirt1 and NF-κB, two key molecules of cellular metabolism. Next, we discuss the connection between NF-κB and neuroinflammation. In addition, we explore how Sirt1 regulates NF-κB in nerve cells and relevant evidence. Finally, we analyze the therapeutic effects of the Sirt1/NF-κB pathway in several common neuroinflammation-related diseases.
Funding source: National Nature Science Foundation of China
Award Identifier / Grant number: No. 82071215 to Ping Zhao; No. 82001154 to Ziyi Wu
Funding source: Outstanding Scientific Fund of Shengjing Hospital
Award Identifier / Grant number: No. 201708
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by the National Nature Science Foundation of China (No. 82071215 to Ping Zhao; No. 82001154 to Ziyi Wu) and the Outstanding Scientific Fund of Shengjing Hospital (No. 201708).
-
Conflict of interest statement: The authors declare that there is no conflict of interest regarding the publication of this article.
References
Ali, A., Shah, S.A., Zaman, N., Uddin, M.N., Khan, W., Ali, A., Riaz, M., and Kamil, A. (2021). Vitamin D exerts neuroprotection via SIRT1/Nrf-2/NF-kB signaling pathways against D-galactose-induced memory impairment in adult mice. Neurochem. Int. 142: 104893, https://doi.org/10.1016/j.neuint.2020.104893.Suche in Google Scholar PubMed
Alvarez-Guardia, D., Palomer, X., Coll, T., Davidson, M.M., Chan, T.O., Feldman, A.M., Laguna, J.C., and Vázquez-Carrera, M. (2010). The p65 subunit of NF-kappaB binds to PGC-1alpha, linking inflammation and metabolic disturbances in cardiac cells. Cardiovasc. Res. 87: 449–458, https://doi.org/10.1093/cvr/cvq080.Suche in Google Scholar PubMed
Aranda, A. and Pascual, A. (2001). Nuclear hormone receptors and gene expression. Physiol. Rev. 81: 1269–1304, https://doi.org/10.1152/physrev.2001.81.3.1269.Suche in Google Scholar PubMed
Benedetti, E., Cristiano, L., Antonosante, A., d’Angelo, M., D’Angelo, B., Selli, S., Castelli, V., Ippoliti, R., Giordano, A., and Cimini, A. (2018). PPARs in neurodegenerative and neuroinflammatory pathways. Curr. Alzheimer Res. 15: 336–344, https://doi.org/10.2174/1567205014666170517150037.Suche in Google Scholar PubMed
Benros, M.E., Waltoft, B.L., Nordentoft, M., Ostergaard, S.D., Eaton, W.W., Krogh, J., and Mortensen, P.B. (2013). Autoimmune diseases and severe infections as risk factors for mood disorders: a nationwide study. JAMA Psychiatr. 70: 812–820, https://doi.org/10.1001/jamapsychiatry.2013.1111.Suche in Google Scholar PubMed
Beurel, E., Toups, M., and Nemeroff, C.B. (2020). The bidirectional relationship of depression and inflammation: double trouble. Neuron 107: 234–256, https://doi.org/10.1016/j.neuron.2020.06.002.Suche in Google Scholar PubMed PubMed Central
Bracchi-Ricard, V., Lambertsen, K.L., Ricard, J., Nathanson, L., Karmally, S., Johnstone, J., Ellman, D.G., Frydel, B., McTigue, D.M., and Bethea, J.R. (2013). Inhibition of astroglial NF-κB enhances oligodendrogenesis following spinal cord injury. J. Neuroinflammation 10: 92, https://doi.org/10.1186/1742-2094-10-92.Suche in Google Scholar PubMed PubMed Central
Brambilla, R., Bracchi-Ricard, V., Hu, W.H., Frydel, B., Bramwell, A., Karmally, S., Green, E.J., and Bethea, J.R. (2005). Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J. Exp. Med. 202: 145–156, https://doi.org/10.1084/jem.20041918.Suche in Google Scholar PubMed PubMed Central
Caggiu, E., Arru, G., Hosseini, S., Niegowska, M., Sechi, G., Zarbo, I.R., and Sechi, L.A. (2019). Inflammation, infectious triggers, and Parkinson’s disease. Front. Neurol. 10: 122, https://doi.org/10.3389/fneur.2019.00122.Suche in Google Scholar PubMed PubMed Central
Cai, Z., Hussain, M.D., and Yan, L.J. (2014). Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int. J. Neurosci. 124: 307–321, https://doi.org/10.3109/00207454.2013.833510.Suche in Google Scholar PubMed
Cantó, C., Gerhart-Hines, Z., Feige, J.N., Lagouge, M., Noriega, L., Milne, J.C., Elliott, P.J., Puigserver, P., and Auwerx, J. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458: 1056–1060, https://doi.org/10.1038/nature07813.Suche in Google Scholar PubMed PubMed Central
Chatterjee, S., Kolmakova, A., and Rajesh, M. (2008). Regulation of lactosylceramide synthase (glucosylceramide beta1-->4 galactosyltransferase); implication as a drug target. Curr. Drug Targets 9: 272–281, https://doi.org/10.2174/138945008783954952.Suche in Google Scholar PubMed
Chen, L.X., Qi, Z., Shao, Z.J., Li, S.S., Qi, Y.L., Gao, K., Liu, S.X., Li, Z., Sun, Y.S., and Li, P.Y. (2019). Study on antidepressant activity of pseudo-ginsenoside HQ on depression-like behavior in mice. Molecules 24: 870, https://doi.org/10.3390/molecules24050870.Suche in Google Scholar PubMed PubMed Central
Chen, S., Lyu, C., Zhou, J., Huang, S., Zhang, Y., Liu, G., Liu, K., Chen, D., Hu, Y., Zhou, L., et al.. (2018). TLR4 signaling pathway mediates the LPS/ischemia-induced expression of monocytechemotactic protein-induced protein 1 in microglia. Neurosci. Lett. 686: 33–40, https://doi.org/10.1016/j.neulet.2018.08.052.Suche in Google Scholar PubMed
Chen, X., Wu, S., Chen, C., Xie, B., Fang, Z., Hu, W., Chen, J., Fu, H., and He, H. (2017). Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-κB pathway following experimental traumatic brain injury. J. Neuroinflammation 14: 143, https://doi.org/10.1186/s12974-017-0917-3.Suche in Google Scholar PubMed PubMed Central
Dahl, J., Ormstad, H., Aass, H.C., Malt, U.F., Bendz, L.T., Sandvik, L., Brundin, L., and Andreassen, O.A. (2014). The plasma levels of various cytokines are increased during ongoing depression and are reduced to normal levels after recovery. Psychoneuroendocrinology 45: 77–86, https://doi.org/10.1016/j.psyneuen.2014.03.019.Suche in Google Scholar PubMed
Deng, H.J., Zhou, C.H., Huang, L.T., Wen, L.B., Zhou, M.L., and Wang, C.X. (2021). Activation of silent information regulator 1 exerts a neuroprotective effect after intracerebral hemorrhage by deacetylating NF-κB/p65. J. Neurochem. 157: 574–585, https://doi.org/10.1111/jnc.15258.Suche in Google Scholar PubMed
Diakopoulos, K.N. and Algül, H. (2019). New wine into old wineskins: PGC-1α and NF-κB in obesity and acute pancreatitis. J. Pathol. 248: 6–8, https://doi.org/10.1002/path.5220.Suche in Google Scholar PubMed
Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E.K., and Lanctôt, K.L. (2010). A meta-analysis of cytokines in major depression. Biol. Psychiatr. 67: 446–457, https://doi.org/10.1016/j.biopsych.2009.09.033.Suche in Google Scholar PubMed
Dresselhaus, E.C. and Meffert, M.K. (2019). Cellular specificity of NF-κB function in the nervous system. Front. Immunol. 10: 1043, https://doi.org/10.3389/fimmu.2019.01043.Suche in Google Scholar PubMed PubMed Central
Eisele, P.S., Salatino, S., Sobek, J., Hottiger, M.O., and Handschin, C. (2013). The peroxisome proliferator-activated receptor γ coactivator 1α/β (PGC-1) coactivators repress the transcriptional activity of NF-κB in skeletal muscle cells. J. Biol. Chem. 288: 2246–2260, https://doi.org/10.1074/jbc.m112.375253.Suche in Google Scholar
Esteves, A.R., Lu, J., Rodova, M., Onyango, I., Lezi, E., Dubinsky, R., Lyons, K.E., Pahwa, R., Burns, J.M., Cardoso, S.M., et al.. (2010). Mitochondrial respiration and respiration-associated proteins in cell lines created through Parkinson’s subject mitochondrial transfer. J. Neurochem. 113: 674–682, https://doi.org/10.1111/j.1471-4159.2010.06631.x.Suche in Google Scholar PubMed
Frye, R.A. (2000). Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273: 793–798, https://doi.org/10.1006/bbrc.2000.3000.Suche in Google Scholar PubMed
Fusco, R., Scuto, M., Cordaro, M., D’Amico, R., Gugliandolo, E., Siracusa, R., Peritore, A.F., Crupi, R., Impellizzeri, D., Cuzzocrea, S., et al.. (2019). N-palmitoylethanolamide-oxazoline protects against middle cerebral artery occlusion injury in diabetic rats by regulating the SIRT1 pathway. Int. J. Mol. Sci. 20: 4845, https://doi.org/10.3390/ijms20194845.Suche in Google Scholar PubMed PubMed Central
Gao, J., Zhou, R., You, X., Luo, F., He, H., Chang, X., Zhu, L., Ding, X., and Yan, T. (2016). Salidroside suppresses inflammation in a D-galactose-induced rat model of Alzheimer’s disease via SIRT1/NF-κB pathway. Metab. Brain Dis. 31: 771–778, https://doi.org/10.1007/s11011-016-9813-2.Suche in Google Scholar PubMed
González-Reyes, R.E., Nava-Mesa, M.O., Vargas-Sánchez, K., Ariza-Salamanca, D., and Mora-Muñoz, L. (2017). Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front. Mol. Neurosci. 10: 427, https://doi.org/10.3389/fnmol.2017.00427.Suche in Google Scholar PubMed PubMed Central
Granger, D.N. and Kvietys, P.R. (2015). Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 6: 524–551, https://doi.org/10.1016/j.redox.2015.08.020.Suche in Google Scholar PubMed PubMed Central
Halling, J.F. and Pilegaard, H. (2020). PGC-1α-mediated regulation of mitochondrial function and physiological implications. Appl. Physiol. Nutr. Metabol. 45: 927–936, https://doi.org/10.1139/apnm-2020-0005.Suche in Google Scholar PubMed
Hardie, D.G. (2011). AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 25: 1895–1908, https://doi.org/10.1101/gad.17420111.Suche in Google Scholar PubMed PubMed Central
Hayden, M.S. and Ghosh, S. (2008). Shared principles in NF-kappaB signaling. Cell 132: 344–362, https://doi.org/10.1016/j.cell.2008.01.020.Suche in Google Scholar PubMed
He, P., Yan, S., Zheng, J., Gao, Y., Zhang, S., Liu, Z., Liu, X., and Xiao, C. (2018). Eriodictyol attenuates LPS-induced neuroinflammation, amyloidogenesis, and cognitive impairments via the inhibition of NF-κB in male C57BL/6J mice and BV2 microglial cells. J. Agric. Food Chem. 66: 10205–10214, https://doi.org/10.1021/acs.jafc.8b03731.Suche in Google Scholar PubMed
Hernández-Jiménez, M., Hurtado, O., Cuartero, M.I., Ballesteros, I., Moraga, A., Pradillo, J.M., McBurney, M.W., Lizasoain, I., and Moro, M.A. (2013). Silent information regulator 1 protects the brain against cerebral ischemic damage. Stroke 44: 2333–2337, https://doi.org/10.1161/strokeaha.113.001715.Suche in Google Scholar
Hoffmann, F.S., Hofereiter, J., Rübsamen, H., Melms, J., Schwarz, S., Faber, H., Weber, P., Pütz, B., Loleit, V., Weber, F., et al.. (2015). Fingolimod induces neuroprotective factors in human astrocytes. J. Neuroinflammation 12: 184, https://doi.org/10.1186/s12974-015-0393-6.Suche in Google Scholar PubMed PubMed Central
Hou, Y., Moreau, F., and Chadee, K. (2012). PPARγ is an E3 ligase that induces the degradation of NFκB/p65. Nat. Commun. 3: 1300, https://doi.org/10.1038/ncomms2270.Suche in Google Scholar PubMed
Hsu, P.F., Pan, W.H., Yip, B.S., Chen, R.C., Cheng, H.M., and Chuang, S.Y. (2017). C-reactive protein predicts incidence of dementia in an elderly Asian Community Cohort. J. Am. Med. Dir. Assoc. 18: 277.e7–277.e11, https://doi.org/10.1016/j.jamda.2016.12.006.Suche in Google Scholar PubMed
Huang, B., Yang, X.D., Lamb, A., and Chen, L.F. (2010). Posttranslational modifications of NF-kappaB: another layer of regulation for NF-kappaB signaling pathway. Cell. Signal. 22: 1282–1290, https://doi.org/10.1016/j.cellsig.2010.03.017.Suche in Google Scholar PubMed PubMed Central
Huang, T., Gao, D., Jiang, X., Hu, S., Zhang, L., and Fei, Z. (2014). Resveratrol inhibits oxygen-glucose deprivation-induced MMP-3 expression and cell apoptosis in primary cortical cells via the NF-κB pathway. Mol. Med. Rep. 10: 1065–1071, https://doi.org/10.3892/mmr.2014.2239.Suche in Google Scholar PubMed
Huang, W., Shang, W.L., Wang, H.D., Wu, W.W., and Hou, S.X. (2012). Sirt1 overexpression protects murine osteoblasts against TNF-α-induced injury in vitro by suppressing the NF-κB signaling pathway. Acta Pharmacol. Sin. 33: 668–674, https://doi.org/10.1038/aps.2011.189.Suche in Google Scholar PubMed PubMed Central
Jayaraj, R.L., Azimullah, S., Beiram, R., Jalal, F.Y., and Rosenberg, G.A. (2019). Neuroinflammation: friend and foe for ischemic stroke. J. Neuroinflammation 16: 142, https://doi.org/10.1186/s12974-019-1516-2.Suche in Google Scholar PubMed PubMed Central
Jiang, N., Jingwei, L., Wang, H., Huang, H., Wang, Q., Zeng, G., Li, S., and Liu, X. (2020a). Ginsenoside 20(S)-protopanaxadiol attenuates depressive-like behaviour and neuroinflammation in chronic unpredictable mild stress-induced depressive rats. Behav. Brain Res. 393: 112710, https://doi.org/10.1016/j.bbr.2020.112710.Suche in Google Scholar PubMed
Jiang, N., Lv, J., Wang, H., Huang, H., Wang, Q., Lu, C., Zeng, G., and Liu, X.M. (2020b). Ginsenoside Rg1 ameliorates chronic social defeat stress-induced depressive-like behaviors and hippocampal neuroinflammation. Life Sci. 252: 117669, https://doi.org/10.1016/j.lfs.2020.117669.Suche in Google Scholar PubMed
Jiang, X., Chen, Z., Yu, X., Chen, J., Sun, C., Jing, C., Xu, L., Liu, F., Ni, W., and Chen, L. (2021). Lipopolysaccharide-induced depression is associated with estrogen receptor-α/SIRT1/NF-κB signaling pathway in old female mice. Neurochem. Int. 148: 105097, https://doi.org/10.1016/j.neuint.2021.105097.Suche in Google Scholar PubMed
Jiao, F. and Gong, Z. (2020). The beneficial roles of SIRT1 in neuroinflammation-related diseases. Oxid. Med. Cell. Longev. 2020: 6782872, https://doi.org/10.1155/2020/6782872.Suche in Google Scholar PubMed PubMed Central
Kang, S., Li, J., Yao, Z., and Liu, J. (2021). Cannabidiol induces autophagy to protects neural cells from mitochondrial dysfunction by upregulating cannabidiol. Front. Cell. Neurosci. 15: 654340, https://doi.org/10.3389/fncel.2021.654340.Suche in Google Scholar PubMed PubMed Central
Korbecki, J., Bobiński, R., and Dutka, M. (2019). Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm. Res. 68: 443–458, https://doi.org/10.1007/s00011-019-01231-1.Suche in Google Scholar PubMed PubMed Central
Lan, F., Cacicedo, J.M., Ruderman, N., and Ido, Y. (2008). SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J. Biol. Chem. 283: 27628–27635, https://doi.org/10.1074/jbc.m805711200.Suche in Google Scholar PubMed PubMed Central
Lanzillotta, A., Sarnico, I., Ingrassia, R., Boroni, F., Branca, C., Benarese, M., Faraco, G., Blasi, F., Chiarugi, A., Spano, P., et al.. (2010). The acetylation of RelA in Lys310 dictates the NF-κB-dependent response in post-ischemic injury. Cell Death Dis. 1: e96, https://doi.org/10.1038/cddis.2010.76.Suche in Google Scholar PubMed PubMed Central
Lee, J.H., Moon, J.H., Lee, Y.J., and Park, S.Y. (2017). SIRT1, a class III histone deacetylase, regulates LPS-induced inflammation in human keratinocytes and mediates the anti-inflammatory effects of hinokitiol. J. Invest. Dermatol. 137: 1257–1266, https://doi.org/10.1016/j.jid.2016.11.044.Suche in Google Scholar PubMed
Lee, J.K., Kim, J.K., Park, S.H., Sim, Y.B., Jung, J.S., and Suh, H.W. (2011). Lactosylceramide mediates the expression of adhesion molecules in TNF-α and IFNγ-stimulated primary cultured astrocytes. Korean J. Physiol. Pharmacol. 15: 251–258, https://doi.org/10.4196/kjpp.2011.15.5.251.Suche in Google Scholar PubMed PubMed Central
Lee, Y., Lee, S., Chang, S.C., and Lee, J. (2019). Significant roles of neuroinflammation in Parkinson’s disease: therapeutic targets for PD prevention. Arch Pharm. Res. 42: 416–425, https://doi.org/10.1007/s12272-019-01133-0.Suche in Google Scholar PubMed
Lemberger, T., Desvergne, B., and Wahli, W. (1996). Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu. Rev. Cell Dev. Biol. 12: 335–363, https://doi.org/10.1146/annurev.cellbio.12.1.335.Suche in Google Scholar PubMed
Li, J. and Wang, H. (2018). miR-15b reduces amyloid-β accumulation in SH-SY5Y cell line through targetting NF-κB signaling and BACE1. Biosci. Rep. 38: BSR20180051, https://doi.org/10.1042/BSR20180051.Suche in Google Scholar PubMed PubMed Central
Linnerbauer, M., Wheeler, M.A., and Quintana, F.J. (2020). Astrocyte crosstalk in CNS inflammation. Neuron 108: 608–622, https://doi.org/10.1016/j.neuron.2020.08.012.Suche in Google Scholar PubMed PubMed Central
Michell-Robinson, M.A., Touil, H., Healy, L.M., Owen, D.R., Durafourt, B.A., Bar-Or, A., Antel, J.P., and Moore, C.S. (2015). Roles of microglia in brain development, tissue maintenance and repair. Brain 138: 1138–1159, https://doi.org/10.1093/brain/awv066.Suche in Google Scholar PubMed PubMed Central
Minter, M.R., Taylor, J.M., and Crack, P.J. (2016). The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. J. Neurochem. 136: 457–474, https://doi.org/10.1111/jnc.13411.Suche in Google Scholar PubMed
Mitchell, J.P. and Carmody, R.J. (2018). NF-κB and the transcriptional control of inflammation. Int. Rev. Cell Mol. Biol. 335: 41–84, https://doi.org/10.1016/bs.ircmb.2017.07.007.Suche in Google Scholar PubMed
Naidech, A.M. (2011). Intracranial hemorrhage. Am. J. Respir. Crit. Care Med. 184: 998–1006, https://doi.org/10.1164/rccm.201103-0475ci.Suche in Google Scholar
Orasanu, G., Ziouzenkova, O., Devchand, P.R., Nehra, V., Hamdy, O., Horton, E.S., and Plutzky, J. (2008). The peroxisome proliferator-activated receptor-gamma agonist pioglitazone represses inflammation in a peroxisome proliferator-activated receptor-alpha-dependent manner in vitro and in vivo in mice. J. Am. Coll. Cardiol. 52: 869–881, https://doi.org/10.1016/j.jacc.2008.04.055.Suche in Google Scholar PubMed PubMed Central
Pan, Z., Rosenblat, J.D., Swardfager, W., and McIntyre, R.S. (2017). Role of proinflammatory cytokines in dopaminergic system disturbances, implications for anhedonic features of MDD. Curr. Pharmaceut. Des. 23: 2065–2072, https://doi.org/10.2174/1381612823666170111144340.Suche in Google Scholar PubMed
Pantazi, E., Folch-Puy, E., Bejaoui, M., Panisello, A., Varela, A.T., Rolo, A.P., Palmeira, C.M., and Roselló-Catafau, J. (2015). PPARα agonist WY-14643 induces SIRT1 activity in rat fatty liver ischemia-reperfusion injury. Biomed Res. Int. 2015: 894679, https://doi.org/10.1155/2015/894679.Suche in Google Scholar PubMed PubMed Central
Park, S.Y., Park, T.G., Lee, S.J., Bae, Y.S., Ko, M.J., and Choi, Y.W. (2014). α-iso-cubebenol inhibits inflammation-mediated neurotoxicity and amyloid beta 1–42 fibril-induced microglial activation. J. Pharm. Pharmacol. 66: 93–105, https://doi.org/10.1111/jphp.12160.Suche in Google Scholar PubMed
Peng, Y., Jin, J., Fan, L., Xu, H., He, P., Li, J., Chen, T., Ruan, W., and Chen, G. (2018). Rolipram attenuates early brain injury following experimental subarachnoid hemorrhage in rats: possibly via regulating the SIRT1/NF-κB pathway. Neurochem. Res. 43: 785–795, https://doi.org/10.1007/s11064-018-2480-4.Suche in Google Scholar PubMed
Planavila, A., Iglesias, R., Giralt, M., and Villarroya, F. (2011). Sirt1 acts in association with PPARα to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovasc. Res. 90: 276–284, https://doi.org/10.1093/cvr/cvq376.Suche in Google Scholar PubMed
Qi, Y., Shang, L., Liao, Z., Su, H., Jing, H., Wu, B., Bi, K., and Jia, Y. (2019). Intracerebroventricular injection of resveratrol ameliorated Aβ-induced learning and cognitive decline in mice. Metab. Brain Dis. 34: 257–266, https://doi.org/10.1007/s11011-018-0348-6.Suche in Google Scholar PubMed
Riedel, B., Browne, K., and Silbert, B. (2014). Cerebral protection: inflammation, endothelial dysfunction, and postoperative cognitive dysfunction. Curr. Opin. Anaesthesiol. 27: 89–97, https://doi.org/10.1097/aco.0000000000000032.Suche in Google Scholar
Rius-Pérez, S., Torres-Cuevas, I., Millán, I., Ortega, Á.L., and Pérez, S. (2020). PGC-1α, inflammation, and oxidative stress: an integrative view in metabolism. Oxid. Med. Cell. Longev. 2020: 1452696, https://doi.org/10.1155/2020/1452696.Suche in Google Scholar PubMed PubMed Central
Schapira, A.H. and Jenner, P. (2011). Etiology and pathogenesis of Parkinson’s disease. Mov. Disord. 26: 1049–1055, https://doi.org/10.1002/mds.23732.Suche in Google Scholar PubMed
Shabab, T., Khanabdali, R., Moghadamtousi, S.Z., Kadir, H.A., and Mohan, G. (2017). Neuroinflammation pathways: a general review. Int. J. Neurosci. 127: 624–633, https://doi.org/10.1080/00207454.2016.1212854.Suche in Google Scholar PubMed
Shah, S.A., Khan, M., Jo, M.H., Jo, M.G., Amin, F.U., and Kim, M.O. (2017). Melatonin stimulates the SIRT1/Nrf2 signaling pathway counteracting lipopolysaccharide (LPS)-Induced oxidative stress to rescue postnatal rat brain. CNS Neurosci. Ther. 23: 33–44, https://doi.org/10.1111/cns.12588.Suche in Google Scholar PubMed PubMed Central
Shi, J., Zou, X., Jiang, K., and Wang, F. (2020). SIRT1 mediates improvement of cardiac surgery-induced postoperative cognitive dysfunction via the TLR4/NF-κB pathway. World J. Biol. Psychiatr. 21: 757–765, https://doi.org/10.1080/15622975.2019.1656820.Suche in Google Scholar PubMed
Singh, P., Hanson, P.S., and Morris, C.M. (2017). SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson’s disease. BMC Neurosci. 18: 46, https://doi.org/10.1186/s12868-017-0364-1.Suche in Google Scholar PubMed PubMed Central
Singh, V. and Ubaid, S. (2020). Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation 43: 1589–1598, https://doi.org/10.1007/s10753-020-01242-9.Suche in Google Scholar PubMed
Sofroniew, M.V. (2015). Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 16: 249–263, https://doi.org/10.1038/nrn3898.Suche in Google Scholar PubMed PubMed Central
Struble, R.G., Ala, T., Patrylo, P.R., Brewer, G.J., and Yan, X.X. (2010). Is brain amyloid production a cause or a result of dementia of the Alzheimer’s type. J. Alzheim. Dis. 22: 393–399, https://doi.org/10.3233/jad-2010-100846.Suche in Google Scholar PubMed PubMed Central
Suchankova, G., Nelson, L.E., Gerhart-Hines, Z., Kelly, M., Gauthier, M.S., Saha, A.K., Ido, Y., Puigserver, P., and Ruderman, N.B. (2009). Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells. Biochem. Biophys. Res. Commun. 378: 836–841, https://doi.org/10.1016/j.bbrc.2008.11.130.Suche in Google Scholar PubMed PubMed Central
Tang, X.L., Wang, X., Fang, G., Zhao, Y.L., Yan, J., Zhou, Z., Sun, R., Luo, A.L., and Li, S.Y. (2021). Resveratrol ameliorates sevoflurane-induced cognitive impairment by activating the SIRT1/NF-κB pathway in neonatal mice. J. Nutr. Biochem. 90: 108579, https://doi.org/10.1016/j.jnutbio.2020.108579.Suche in Google Scholar PubMed
Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K., and Horio, Y. (2007). Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem. 282: 6823–6832, https://doi.org/10.1074/jbc.m609554200.Suche in Google Scholar PubMed
Tian, J., Liu, Y., Wang, Z., Zhang, S., Yang, Y., Zhu, Y., and Yang, C. (2021). LncRNA Snhg8 attenuates microglial inflammation response and blood-brain barrier damage in ischemic stroke through regulating miR-425-5p mediated SIRT1/NF-κB signaling. J. Biochem. Mol. Toxicol. 35: e22724, https://doi.org/10.1002/jbt.22724.Suche in Google Scholar PubMed
Tong, Y., Fu, H., Xia, C., Song, W., Li, Y., Zhao, J., Zhang, X., Gao, X., Yong, J., Liu, Q., et al.. (2020). Astragalin exerted antidepressant-like action through SIRT1 signaling modulated NLRP3 inflammasome deactivation. ACS Chem. Neurosci. 11: 1495–1503, https://doi.org/10.1021/acschemneuro.0c00156.Suche in Google Scholar PubMed
Tuon, T., Souza, P.S., Santos, M.F., Pereira, F.T., Pedroso, G.S., Luciano, T.F., De Souza, C.T., Dutra, R.C., Silveira, P.C., and Pinho, R.A. (2015). Physical training regulates mitochondrial parameters and neuroinflammatory mechanisms in an experimental model of Parkinson’s disease. Oxid. Med. Cell. Longev. 2015: 261809, https://doi.org/10.1155/2015/261809.Suche in Google Scholar PubMed PubMed Central
Villarreal, A.E., O’Bryant, S.E., Edwards, M., Grajales, S., and Britton, G.B. (2016). Serum-based protein profiles of Alzheimer’s disease and mild cognitive impairment in elderly Hispanics. Neurodegener. Dis. Manag. 6: 203–213, https://doi.org/10.2217/nmt-2015-0009.Suche in Google Scholar PubMed PubMed Central
Wagner, N. and Wagner, K.D. (2020). The role of PPARs in disease. Cells 9: 2367, https://doi.org/10.3390/cells9112367.Suche in Google Scholar PubMed PubMed Central
Wan, W., Ding, Y., Xie, Z., Li, Q., Yan, F., Budbazar, E., Pearce, W.J., Hartman, R., Obenaus, A., Zhang, J.H., et al.. (2019). PDGFR-β modulates vascular smooth muscle cell phenotype via IRF-9/SIRT-1/NF-κB pathway in subarachnoid hemorrhage rats. J. Cerebr. Blood Flow Metabol. 39: 1369–1380, https://doi.org/10.1177/0271678x18760954.Suche in Google Scholar
Wang, B., Ge, S., Xiong, W., and Xue, Z. (2018). Effects of resveratrol pretreatment on endoplasmic reticulum stress and cognitive function after surgery in aged mice. BMC Anesthesiol. 18: 141, https://doi.org/10.1186/s12871-018-0606-5.Suche in Google Scholar PubMed PubMed Central
Wang, Y., Chen, S., Tan, J., Gao, Y., Yan, H., Liu, Y., Yi, S., Xiao, Z., and Wu, H. (2021). Tryptophan in the diet ameliorates motor deficits in a rotenone-induced rat Parkinson’s disease model via activating the aromatic hydrocarbon receptor pathway. Brain Behav. 11: e2226, https://doi.org/10.1002/brb3.2226.Suche in Google Scholar PubMed PubMed Central
Wen, W., Wang, J., Zhang, B., and Wang, J. (2020). PPARα agonist WY-14643 relieves neuropathic pain through SIRT1-mediated deacetylation of NF-κB. PPAR Res. 2020: 6661642, https://doi.org/10.1155/2020/6661642.Suche in Google Scholar PubMed PubMed Central
Xiang, H.C., Lin, L.X., Hu, X.F., Zhu, H., Li, H.P., Zhang, R.Y., Hu, L., Liu, W.T., Zhao, Y.L., Shu, Y., et al.. (2019). AMPK activation attenuates inflammatory pain through inhibiting NF-κB activation and IL-1β expression. J. Neuroinflammation 16: 34, https://doi.org/10.1186/s12974-019-1411-x.Suche in Google Scholar PubMed PubMed Central
Xu, N., Huang, F., Jian, C., Qin, L., Lu, F., Wang, Y., Zhang, Z., and Zhang, Q. (2019). Neuroprotective effect of salidroside against central nervous system inflammation-induced cognitive deficits: a pivotal role of sirtuin 1-dependent Nrf-2/HO-1/NF-κB pathway. Phytother Res. 33: 1438–1447, https://doi.org/10.1002/ptr.6335.Suche in Google Scholar PubMed
Yan, J., Luo, A., Gao, J., Tang, X., Zhao, Y., Zhou, B., Zhou, Z., and Li, S. (2019). The role of SIRT1 in neuroinflammation and cognitive dysfunction in aged rats after anesthesia and surgery. Am. J. Transl. Res. 11: 1555–1568.Suche in Google Scholar
Yan, L. and Zhu, T. (2019). Effects of rosuvastatin on neuronal apoptosis in cerebral ischemic stroke rats via Sirt1/NF-kappa B signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 23: 5449–5455, https://doi.org/10.26355/eurrev_201906_18214.Suche in Google Scholar PubMed
Yang, X.D., Tajkhorshid, E., and Chen, L.F. (2010). Functional interplay between acetylation and methylation of the RelA subunit of NF-kappaB. Mol. Cell Biol. 30: 2170–2180, https://doi.org/10.1128/mcb.01343-09.Suche in Google Scholar PubMed PubMed Central
Yang, X.Y., Li, Q.J., Zhang, W.C., Zheng, S.Q., Qu, Z.J., Xi, Y., and Wang, G. (2020). AMPK-SIRT1-PGC1α signal pathway influences the cognitive function of aged rats in sevoflurane-induced anesthesia. J. Mol. Neurosci. 70: 2058–2067, https://doi.org/10.1007/s12031-020-01612-w.Suche in Google Scholar PubMed
Yeung, F., Hoberg, J.E., Ramsey, C.S., Keller, M.D., Jones, D.R., Frye, R.A., and Mayo, M.W. (2004). Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23: 2369–2380, https://doi.org/10.1038/sj.emboj.7600244.Suche in Google Scholar PubMed PubMed Central
Yu, H., Zhang, F., and Guan, X. (2019). Baicalin reverse depressive-like behaviors through regulation SIRT1-NF-kB signaling pathway in olfactory bulbectomized rats. Phytother Res. 33: 1480–1489, https://doi.org/10.1002/ptr.6340.Suche in Google Scholar PubMed
Zhang, J., Zhang, Y., Xiao, F., Liu, Y., Wang, J., Gao, H., Rong, S., Yao, Y., Li, J., and Xu, G. (2016). The peroxisome proliferator-activated receptor γ agonist pioglitazone prevents NF-κB activation in cisplatin nephrotoxicity through the reduction of p65 acetylation via the AMPK-SIRT1/p300 pathway. Biochem. Pharmacol. 101: 100–111, https://doi.org/10.1016/j.bcp.2015.11.027.Suche in Google Scholar PubMed
Zhang, Q., Lenardo, M.J., and Baltimore, D. (2017). 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell 168: 37–57, https://doi.org/10.1016/j.cell.2016.12.012.Suche in Google Scholar PubMed PubMed Central
Zhang, X.H., Peng, L., Zhang, J., Dong, Y.P., Wang, C.J., Liu, C., Xia, D.Y., and Zhang, X.S. (2020). Berberine ameliorates subarachnoid hemorrhage injury via induction of sirtuin 1 and inhibiting HMGB1/Nf-κB pathway. Front. Pharmacol. 11: 1073, https://doi.org/10.3389/fphar.2020.01073.Suche in Google Scholar PubMed PubMed Central
Zhang, X., Lu, Y., Wu, Q., Dai, H., Li, W., Lv, S., Zhou, X., Zhang, X., Hang, C., and Wang, J. (2019). Astaxanthin mitigates subarachnoid hemorrhage injury primarily by increasing sirtuin 1 and inhibiting the toll-like receptor 4 signaling pathway. FASEB J. 33: 722–737, https://doi.org/10.1096/fj.201800642rr.Suche in Google Scholar
Zhang, X.S., Li, W., Wu, Q., Wu, L.Y., Ye, Z.N., Liu, J.P., Zhuang, Z., Zhou, M.L., Zhang, X., and Hang, C.H. (2016). Resveratrol attenuates acute inflammatory injury in experimental subarachnoid hemorrhage in rats via inhibition of TLR4 pathway. Int J Mol Sci 17: 1331, https://doi.org/10.3390/ijms17081331.Suche in Google Scholar PubMed PubMed Central
Zhao, H.F., Li, N., Wang, Q., Cheng, X.J., Li, X.M., and Liu, T.T. (2015). Resveratrol decreases the insoluble Aβ1-42 level in hippocampus and protects the integrity of the blood-brain barrier in AD rats. Neuroscience 310: 641–649, https://doi.org/10.1016/j.neuroscience.2015.10.006.Suche in Google Scholar PubMed
Zheng, Y., Hu, Q., Manaenko, A., Zhang, Y., Peng, Y., Xu, L., Tang, J., Tang, J., and Zhang, J.H. (2015). 17β-estradiol attenuates hematoma expansion through estrogen receptor α/silent information regulator 1/nuclear factor-kappa b pathway in hyperglycemic intracerebral hemorrhage mice. Stroke 46: 485–491, https://doi.org/10.1161/strokeaha.114.006372.Suche in Google Scholar PubMed PubMed Central
Zúñiga, J., Cancino, M., Medina, F., Varela, P., Vargas, R., Tapia, G., Videla, L.A., and Fernández, V. (2011). N-3 PUFA supplementation triggers PPAR-α activation and PPAR-α/NF-κB interaction: anti-inflammatory implications in liver ischemia-reperfusion injury. PLoS One 6: e28502, https://doi.org/10.1371/journal.pone.0028502.Suche in Google Scholar PubMed PubMed Central
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Monoaminergic hypo- or hyperfunction in adolescent and adult attention-deficit hyperactivity disorder?
- Immune modulations and immunotherapies for Alzheimer’s disease: a comprehensive review
- Current uses, emerging applications, and clinical integration of artificial intelligence in neuroradiology
- Central neuroinflammation in Covid-19: a systematic review of 182 cases with encephalitis, acute disseminated encephalomyelitis, and necrotizing encephalopathies
- Hippocampal Cb2 receptors: an untold story
- The protective effects of activating Sirt1/NF-κB pathway for neurological disorders
- Putative neural consequences of captivity for elephants and cetaceans
Artikel in diesem Heft
- Frontmatter
- Monoaminergic hypo- or hyperfunction in adolescent and adult attention-deficit hyperactivity disorder?
- Immune modulations and immunotherapies for Alzheimer’s disease: a comprehensive review
- Current uses, emerging applications, and clinical integration of artificial intelligence in neuroradiology
- Central neuroinflammation in Covid-19: a systematic review of 182 cases with encephalitis, acute disseminated encephalomyelitis, and necrotizing encephalopathies
- Hippocampal Cb2 receptors: an untold story
- The protective effects of activating Sirt1/NF-κB pathway for neurological disorders
- Putative neural consequences of captivity for elephants and cetaceans